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Abstract. In this paper, we present a system capable of improving the
I/O performance in an automatic way. This system is able to learn the
behavior of the applications running on top and find the best data place-
ment in the disk in order to improve the I/O performance. This system
is built by three independent modules. The first one is able to learn the
behavior of a workload in order to be able to reproduce its behavior later
on, without a new execution. The second module is a drive modeler that
is able to learn how a storage drive works taking it as a “black box”. Fi-
nally, the third module generates a set of placement alternatives and uses
the afore mentioned models to predict the performance each alternative
will achieve. We tested the system with five benchmarks and the system
was able to find better alternatives in most cases and improve the per-
formance significantly (up to 225%). Most important, the performance
predicted where always very accurate (less that 10% error).

1 Introduction

One of the main trends in the computing world is the increasing needs for I/O
capacity and performance shown by applications.

Many approaches to solve this problem have been proposed in the last decades.
One of the most promising consists of configuring the storage system and the
placement of data to maximize the storage-system performance for a specific
workload. In general, this approach consists of finding the optimal configuration
and data placement for the I/O system given a specific workload. Currently,
these optimizations are usually done by experts who use their experience and
intuition to make this configuration and placement. A tool that could perform
this tuning in an automatic way would be a great step in making this technique
available to a wider range of sites. Furthermore, this tool becomes even more
useful if the optimal configuration and placement varies throughout the time
making it more difficult to keep the right placement up to date.

Our objective is to design a storage system capable of extracting all potential
performance and capacity available in a heterogeneous environment with as little
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human interaction as possible. We envision the system as an advanced data-
placement mechanism that analyzes the workload to decide the best distribution
of data among all available devices, and the best placement within each device.

The aim of this paper is to present the global design of our proposal. This
design includes a disk model based on neural networks, an approach to model
the workload based on reduced traces and some sample strategies to generate
different placements.

2 Autonomic storage system: a global picture

In order to place the work in the right context, we will first give a global descrip-
tion of how the whole system works, and then we will describe in detail each of
the parts that build it.

In the starting point, when the system is new, we have a set of disks attached
to the system. The first thing we have to do is to model them. This model should
have two main properties. First it should be able to predict the performance of
a given workload, without having to run it. Second, it should treat the disk as a
“black box”.

Once we have all disks modeled, and thus we can predict the performance
of any possible workload, we start learning the workload behavior. This step
mainly consists of tracing the requests done to the disk and keeping them in
file-system internal data structures.

Periodically, which could be once a day, once a week, or any other period de-
pending on the needs, the system uses the workload behavior learned to generate
different placement alternatives that may (or may not) improve the performance
of the applications running on the system. As these new placements cannot be
implemented and tested, we will use the disk models to predict the performance
each new placement would achieve.

After the performance of all proposed placements is predicted, we pick the
best one and compare it with the performance of the current workload (which
has been learned at the same time as the workload). If the new placement is
better that 10% the performance of the current one, then we take the effort
of moving the blocks to implement the new placement and thus improve the
performance of the applications using these disks.

It is also important to see, that whenever a new disk is added, it has to be
modeled and then it will be used by the generator of placement alternatives to
place blocks in it.

Once described the module as a whole, it is important to notice that the
objective of this paper is to test that all modules are possible and that the final
system works well. Our current version is not integrated in the file system, but
it is implemented as separated modules that work off-line, but placing them in
the kernel and running them on-line it is just an implementation problem that
lies as future work.



3 Disk Model

The main objective of this module, and also the main difference compared to
other approaches, is to design a model that has no previous knowledge about
the drive to model.

In our system, we propose a general model based on a mathematical function.
We assume that we can find a function (M) that approximates the service time
St for each request. Thus, our general model can be expressed by:

St ≈ M(R)
where: R is the input vector with components:
RAddr: address of the first-requested block,
RJump: difference (in blocks) between this request and the previous one.
RSize: request size.
St is the request service time.
Our experience has shown us that it is better to have one model for each

operation (Read and Write). Thus, we will use one model for each request type.
In [1], we studied different approaches using several applications and drives,

and we found that neural network are the best mechanism to model drives.
Neural Networks have a high capacity for function approximation, and this

is exactly our objective. We have tested a simple architecture based on feed-
forward network to resolve the function approximation problem because it has
been proved to be a simple and effective approach.

We use a feed-forward neural net with the following configuration: 3 neurons
in input layer, 25 neurons in the hidden layer, and one neuron in output layer
(service time). To resolve the problem, we use a Levenberg-Marquardt back-
propagation algorithm.

As we can see, this approach behaves as a “black box” and does not need
any previous knowledge about the device, it can learn the behavior by running
a synthetic trace. This learning process was described in a previous paper [1].

4 Workload model

We focused the workload model on files because it allows us to focus the effort
toward the most important (i.e. used) files of the application to reduce the size
of the model and the complexity of the data-placement module.

Our file model is based on the segments accessed and their relationship.
We define a segment as a set of blocs requested in a single disk operation.
Please keep in mind that our model works at disk-drive level and thus segments
are not necessarily what users request, but what the operating system (or file
system) sends to the disk drive after being filtered by the buffer cache and some
possible reordenation done during the process. Thus, our file model stores, for
each segment, the following information:

– The first logical block requested. Using logical blocks makes our model in-
dependent of the physical location of the block.



– The total number of requests made to this direction. Used in order to keep
some information about the importance of different segments.

– Request type (read/write). This value is expressed as read probability.
– The average size of the requests made to this segment.
– The list of possible predecessor requests. This list contains information about

the requests that preceded it in the trace. Each entry in the list has:

• the file id. This field is used for two reasons. The first one is to identify
the physical location of the last accessed block. Second, it is used to find
relationships among different files.

• the last logical block of the previous request. This field is used to find the
number of blocks the disk has “jumped” from one request to the other.

• the number of times that this element preceded the request. This field
is used to know the percentage of times this sequence occurred.

As we can see, this model fulfills all our requirements. It can be generated
on-line because new requests can be added very easily. No physical information
is kept, and thus it is block-location independent. It does not keep any time
information and thus it is device independent. It does not grow unnecessarily but
it has enough information (even inter-file relationships) for the data placement
module to take decisions. Finally, building a trace with the information required
by the drive model previously described (initial block, R/W, jump and size of
the request) is trivial.

5 Prediction and data placement

This module implements its functionality through three independent steps: gen-
eration of placement alternatives, evaluation of the generated alternatives, and
application of the best placement found.

5.1 Generation of placement alternatives

In order to generate a placement, we first decide a logical order in which blocks
should be placed and then we decide in which disk blocks we map them. Finally,
we may refine the solution to take into account specific drive characteristics.

Logical ordering The main idea is to encourage spatial locality. This approach
can reduce the seek distance and can increase the probability that the disk read-
ahead improves the general performance. We can follow two different approaches:

a) Based on the access pattern. We use the access pattern represented
in the file model, to find the probabilistic access sequence. We can generate a
directed graph G(V,E), where the vertex set (V ) represents the accessed blocks.
The set of edges (E) is defined as follows: Eij belongs to E if block i is acceded
after block j. Furthermore, each edge Eij has a weight (edge weight), which
represents the number of times that block j is preceded by i.
In order to generate the logical ordering, we eliminate edges, taking only the



edge that has the largest weight, until each node only has one input edge and
one output edge, except the first and the last one.

b) Based on sequential structure. We directly use the logical order of the
file regardless of the real accesses. This means that we use the pointers to data
blocks to make the list.

Physical placement Once we have the logical order, we need to find a spot (or
spots) in the disk to place them sequentially according to the logical order. To
do it, we have several alternatives regarding the sets of disk blocks we consider
to relocate the file. The three studied alternatives are presented here:

a All disk blocks. It uses all disk blocks except those that contain metadata
such as superblock copies. This option may move blocks from other files.

b File-used blocks. It uses all blocks used by the defined as important files.
c File-used blocks plus free blocks.

Refinement: special drive conditions Depending on the drive type, it may
have some special conditions that could be taken into account to refine the
physical placement. In this work we have only tested one that deals with the
different density of disk zones.

Hot blocks. If the disk has a faster area, we can try to place the most used
blocks in this area. We will divide the previous list in two sections. One, as big
as the fast zone, with the most used blocks. A second one, with the rest of the
file blocks. Both lists will be ordered as explained before. This refinement looses
locality, but gains bandwidth, a trade off that has to be evaluated. To simplify
things, we will only apply this refinement when all disk blocks are used.

5.2 Evaluation of alternatives

For each proposed placement, the system generates a new allocation map and
takes the file model for each “important” file to create an estimate trace for
these files. Then, the disk model is used to predict the performance.

5.3 Application of the proposed placement

Here, the module applies the placement proposed by the “winning alternative”.
In order to take some action we demanded that the placement improves the
performance, at least, 10%. We decided to use 10% as threshold, because smaller
gains may not be enough for the trouble of data movement and because our
predictions have a potential error of up to 10%.

6 Experiments and results

In this section, we are going to show how our global system works. In order to
show it, we are going to use different workloads and to run the workload in a
file system artificially aged according to [2] (We also executed the tests in a new
file system; but for space reasons will not be presented)



6.1 Workloads

Synthetic benchmarks

1 SSA: Simple Sequential Access. The application reads one file sequentially.
In each read it requests 64KB. It will show us the behavior in the simplest
case: accessing a single file (but no necessarily using regular intervals).

2 FSA: Fixed Stride Access. In this case, we used more complex pattern access
than sequential. It uses a stride of 512KB and reads 8KB in each requests.

3 MSA: Multiple Sequential Access. Here, the application reads simultaneous
three files. It requests a segment of the first file, then a segment of second one
and a segment of third file. In each read it requests 64KB. These operations
are repeated until reading the files completely. It will allow us to observe what
happens when several files are involved, but with a reproducible behavior.

The inter-arrival time was uniformly distributed (0 and 100 ms) in all case.
The files used were 300Mbytes each and we called them: file1, file2 and file3.

Sequence of access to WEB pages In this case, we took a personal WEB
page generated by a standard tool. This information is organized in many direc-
tories and files. In the test, we accessed a sequence of pages, where each requested
page implied the access to a set of related files, which are normally small in size.
Therefore, in this application the interrelation between files is more important
that the access pattern within each file.

TPC-H benchmark Finally, we have tested the TPC-H benchmark, which is
a decision support benchmark for Databases. We created a database of 1 Gbytes
and used Postgres SQL 7.2.1 for LINUX. We ran all queries, except queries
number 7, 9, 20 and 21 because these queries contain functions not supported
by our database manager system.

6.2 Results

Following the procedure described in the section 5.1, we created 10 possible
placements for each list of important files. Table 1 presents all possible combi-
nations and the names we have given them.

Table 1. Possible placements implemented

Based on Based on
Access Pattern Sequential Structure

APAD SSAD
Hot blocks

All disk blocks (all file blocks fit) APAD HF SSAD HF
Hot blocks
(not all file blocks fit) APAD HNF SSAD HNF

Used blocks APUB SSUB
Used+free blocks APUF SSUF



Synthetic Workload on an aged file system If we apply the SSAD place-
ment alternative for the SSA benchmark created on an aged file system, we could
improve the performance in 44.5% as Figure 1 shows. In this experiment it is
important to observe that, although the access pattern should be sequential,
APAD does not achieve as good performance as SSAD. The reason behind this
unexpected behavior, is that some requests were reordered when the access pat-
tern was learned, but the real access is sequential. If more repetitions had been
done to learn the pattern, as will probably be in a real system, this reordenation
will only appear in the pattern if they occur very frequently and not just once.

For the FSA benchmark, Figure 2, the improvement could reach up to 225%
with APAD placement.
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Fig. 1. SSA on on file system aged
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Fig. 2. FSA on file system aged

With regard to MSA benchmark, Figure 3 shows that the best placement,
APAD, could improvement the performance over 100% for three files.
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When we applied the winning placement and measured the real performance
(Figure 4), we can observe that the relative errors were again very small, but for
file1 of MSA where the relative error is over 100%, which makes the global error
for the MSAA benchmark grow unexpectedly.



The problem in MSA benchmark is that the buffer cache policies generate a
different behavior when the blocks are remapped. Therefore, the access pattern
learned and used to make the prediction is very different from the one obtained
once the new placement has been applied. To prove this fact, we executed MSA
benchmark turning off the read-ahead mechanism in the buffer cache. In this new
experiment, the relative error was, once again, below 10% for all files. Obviously,
the proposal is not to eliminate the read-ahead in the buffer cache to obtain
reliable results; rather the idea is to develop a integrated approach between our
system and the file system to guarantee that such changes of behavior will not
be produced or will be taken into account by the prediction system.

Sequence of access to pages WEB on a file system aged As we can see
in figure 5, the values show us that the alternatives based on the access pattern
could improve the performance near to 100%. The reason for this behavior is
that file were spread throughout all the disk while they need to be close.

-20%

0%

20%

40%

60%

80%

100%

120%

A
P

A
D

A
P

A
D

_
H

F

A
P

U
B

A
P

U
F

S
S

A
D

S
S

A
D

_
H

F

S
S

U
B

S
S

U
F

Fig. 5. Sequence of access to WEB pages
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TPC-H on a file system aged The best placement alternative for the TPC-H
on an aged file system is SSAD, and could improve the performance in 142% for
access to partsupp table, 73 % for order table, 32% for lineitem table and 39%
if we take all tables together.

To give a final idea of the potential improvements, we computed the real run-
time improvement for each query and then all queries together. Figure 6 shows
the runtime (in seconds) obtained for each query with the original placement
and when the placement SSAD was applied. The global reduction is 14.64%.

In a real system, we would not first learn the behavior, then move data, and
finally reexecute the application. The normal behavior is that we learn during
some time, move the data, and then continue the execution (not repeating exactly
what we learned). To test how our system would behave in such an environment
we tested WEB and TPC-H benchmarks. In the first case we learned from one
sequence of pages (one possible session) and tested with a different one (another
session by another user). In the TPC-H we learned from half of the queries and
tested the other half.



The results showed that the performance improvement obtained with the
new placements and the “not learned” part of application were similar to the
ones presented in the previous sections. This means that the system is able to
do accurate predictions and it can be used for autonomic computing.

7 Related Work

The first kind of storage-drive models we find in the bibliography are based on
simulation techniques. In this group we found specially interesting the proposals
done by Ruemmler and Wilkes [3] and the one done by Ganger et al. [4, 5].
Another possibility is the usage of analytical models where the input is not a
trace (as in the previous group), but a characterization of the load [6] Both,
simulations and analytical models need prior knowledge of the disks, which is
not always easy to find, while our neural network approach does not. Finally,
there is also another group of proposals that treat the drive as a “black box”
and learn the behavior after a training period [7, 8] but they either need huge
data strutres or work at a very high level (not request level as we need).

With regard to application model, some works have been proposed in charac-
terizations and modeling of I/O access pattern [9–14]. Most of these studies were
made at the file system level. Gómez and Santonja [15] developed an approach to
analyze and model disk access pattern but cannot be learned and used on-line.
In some aspect our workload model is similar to the presented by Madhyastha
and Reed in [16], and by Oly in [17]. They used Hidden Markov Model (HMM)
for classification and prediction of I/O access patterns. Basically, They use the
model to predict the next action for the file system or to propose an allocation
strategy according to the access pattern classification.

Finally, some work has been done on block replacement to improve I/O per-
formance [18, 19], but are not integrated in an autonomic system as ours.

Regarding our global system, there are some tools similar to our system such
as MINERVA [20] and Hippodrome [21] development in the HP Laboratories.
However, they target their work to the configuration of RAID systems.

8 Conclusions

In this paper, we have presented an autonomic storage system based on au-
tomatic learning of previous behavior. This system uses a modular design to
explore different placement possibilities and decides which one is better and
whether the new placement is worth the effort of making the changes.

In addition, to achieve the autonomic storage system, we have proposed novel
mechanisms to model disks and applications that may be of use to the research
community in different environments.

The tests done showed that the performance prediction is reliable. Further-
more, we have also shown that this prediction can be used to improve the per-
formance significantly when the data is not correctly placed.
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