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To Yale

5 years passed since Yale@75, 
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OK but why do you have to drag us with you?

Interesting how you keep staying  

in the center…
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Beauty comes shining through not only when blooming



Agenda:

• Technology environment
• Process is slowing down

• Big Data

• Funnel

• Killer apps ➔ ML

• Efficient ML BASICS

• Energy:

• Amdahl and MA (divide effectively our limited resources)

• SMT – is this a biggy?

• Pipeline – why? 

• Map applications to HW – Data Flow concept

• Prediction – no validation is necessary

• Conclusions
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*ACMqueue April 6, 2012, Processors, Volume 10, issue 4 CPU DB: Recording Microprocessor History, Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, Mark Horowitz, Stanford University

Technology environment

Performance History

We (the architects) did an “OK-” job
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https://queue.acm.org/listing.cfm?item_topic=Processors&qc_type=theme_list&filter=Processors&page_title=Processors&order=desc
https://queue.acm.org/issuedetail.cfm?issue=2181796


Input: Unstructured data

Big Data ➔ usage of DATA

➔ Extract Transformed Load

➔ Read Once

➔ Non-Temporal 

Memory Access

Funnel

beta=
BWout

BWin
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Killer applications*
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*Applications you can not effectively execute on current HW (Dr. Andy Grove)

• ML is one!?

• Funnel (in most of the cases)

• Input: huge amount of data 

Output: small amount

• Many simple operations 



Energy in “Data Flow” architecture
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Now Read Once counts!
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• Energy ➔ Performance  

• Map applications to HW ➔ Graph mapping; 

data flow

• Efficient mapping 

• Co-design HW structure and smart compiler

in specific application environment

• Almost no flow control

• Statistical results – no need to validate 

execution 
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Efficient ML I Accelerator



• Energy ➔ Performance

• System vs. Accelerators: It is Amdahl again!

• Energy reduction

• Reduction in Computing (MACs op.)
• Pruning

• Prediction

• Reduction in data access and movement 
• Pipeline

• Efficient usage of the Hardware resources
• Multi-Amdahl (divide effectively your limited resources)

• SMT
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Efficient ML II Balanced design and energy reduction



0.1pJ/OP

0.01pJ/OP

TOPS/W drop due to 

inefficiency

(e.g. data movement, 

DRAM repeated 

accesses…)

Energy efficiency α energy/OP
ISSCC Feb 17th 2019 preen announcement
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Efficient ML II: Reduction in Computing
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• Reduction in Computing ➔

reduce # of operations via

• Pruning

• Well known techniques

• Value Data (Prediction)

• ML are statistical ➔ no need to validate execution
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G. Shomron, U. Weiser, “Spatial Correlation and Value Prediction in Convolutional Neural Networks”

IEEE Computer Architecture Letters (CAL) Journal January 2019

Efficient ML II: Reduction in Computing (1)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8594568
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Efficient ML II: Reduction in Data Accesses (2)

• Reduction in Data access and movements

• Pipeline execution

➔ Data stays on die

MAC

Memory (DRAM)

MAC MAC MAC

I

R

Memory (SRAM)

IN = INOut

Layer 1 Layer 2 Layer 3 Layer n



• Multi-Amdahl* (divide effectively your limited resources)

e.g. efficient resource division (e.g. SRAM)*

• SMT**

• Resources needs are known ahead of time…
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Efficient ML II: Efficient usage of HW

Optimization using Lagrange multipliers
Target under a constraint A 

F’= derivation of the accelerator Function

t2 t3 tnt1

F1(a1) F2(a2) Fn(an)

ti Fi’(ai) = tj Fj’(aj)

** *G. Shomron, T. Horowitz, U. Weiser, “SMT-SA: Simultaneous Multithreading in Systolic Arrays” IEEE Computer Architecture 

Letters (CAL) Journal July 2019 

** Technion EE, Advanced Microarchitecture course’s Exam (winter 2019) 

*T. Zidenberg, Isaac Keslassy, U. Weiser, “Optimal Resource Allocation with MultiAmdahl” IEEE MICRO Journal August 2013
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Conclusions

• Opportunities:
• Map application to HW

• Reduce energy per operation?

• Reduce # of operations

• Reduce data movement and memory access

• Efficient usage of HW

• We’re gonna have fun

• Open field, lots of ideas, many researchers

• Opportunities

• New passionate energy in the community 

• Back to the “big impact” era…



Thank You
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