"The Next Challenge: Energy Efficient Approach in ML Architecture"

Professor Uri Weiser Viterbi Faculty of Electrical Engineering The Technion Israel

July 1st 2019

To Yale

5 years passed since Yale@75,

OK but why do you have to drag us with you?

Interesting how you keep staying

in the center...

Agenda:

- Technology environment
 - Process is slowing down
 - Big Data
 - Funnel
 - Killer apps → ML
- Efficient ML BASICS
 - Energy:
 - Amdahl and MA (divide effectively our limited resources)
 - SMT is this a biggy?
 - Pipeline why?
 - Map applications to HW
 - Prediction no validation is necessary
- Conclusions

Performance History

We (the architects) did an "OK-" job

Killer applications*

- ML is one!?
- Funnel (in most of the cases)
 - Input: huge amount of data
 Output: small amount
 - Many simple operations

^{*}Applications you can not effectively execute on current HW (Dr. Andy Grove)

Energy in "Data Flow" architecture

Instruction energy breakdown

"Data flow" energy breakdown

Now Read Once counts!

Efficient ML I Accelerator

- Energy → Performance
 - Map applications to HW → Graph mapping; data flow
 - Efficient mapping
 - Co-design HW structure and smart compiler in specific application environment
 - Almost no flow control
 - Statistical results no need to validate execution

Efficient ML II Balanced design and energy reduction

- Energy → Performance
 - System vs. Accelerators: It is Amdahl again!
 - Energy reduction
 - Reduction in Computing (MACs op.)
 - Pruning
 - Prediction
 - Reduction in data access and movement
 - Pipeline
 - Efficient usage of the Hardware resources
 - Multi-Amdahl (divide effectively your limited resources)
 - SMT

Efficient ML II: Reduction in Computing

Energy efficiency α energy/OP

ISSCC Feb 17th 2019 preen announcement

Efficient ML II: Reduction in Computing (1)

- Reduction in Computing reduce # of operations via
 - Pruning
 - Well known techniques
 - Value Data (Prediction)
 - ML are statistical → no need to validate execution

Efficient ML II: Reduction in Data Accesses (2)

- Reduction in Data access and movements
 - Pipeline execution
 - → Data stays on die

Efficient ML II: Efficient usage of HW

Multi-Amdahl* (divide effectively your limited resources)

Optimization using Lagrange multipliers

Target under a constraint A

F'= derivation of the accelerator Function

e.g. efficient resource division (e.g. SRAM)*

$$t_i F_i'(a_i) = t_j F_j'(a_j)$$

- **SMT****
 - · Resources needs are known ahead of time...

^{*}T. Zidenberg, Isaac Keslassy, U. Weiser, "Optimal Resource Allocation with MultiAmdahl" IEEE MICRO Journal August 2013

^{**} Technion EE, Advanced Microarchitecture course's Exam (winter 2019)

^{** *}G. Shomron, T. Horowitz, U. Weiser, "SMT-SA: Simultaneous Multithreading in Systolic Arrays" IEEE Computer Architecture Letters (CAL) <u>Journal</u> July 2019

Conclusions

Opportunities:

- Map application to HW
- Reduce energy per operation?
- Reduce # of operations
- Reduce data movement and memory access
- Efficient usage of HW
- We're gonna have fun
- Open field, lots of ideas, many researchers
- Opportunities
- New passionate energy in the community
- Back to the "big impact" era...

Thank You