
Enabling the convergence of 
HPC and Data Analytics in 
highly distributed 
computing infrastructures

Rosa M Badia

1-2 July 2019 Yale: 80 in 2019, Barcelona



What was I doing when I first met Yale? 



Challenges in highly distributed infrastructures

• Resources that appear and disappear
• How to dynamically add/remove nodes to the infrastructure 

• Heterogeneity 
• Different HW characteristics (performance, memory, etc)
• Different architectures -> compilation issues  

• Network 
• Different types of networks 
• Instability

• Trust and Security
• Power constraints from the devices 

in the edge 

Sensors
Instruments
Actuators

HPC 
Exascale computing
Cloud

Edge devices

Fog devices

AI everywhere



Data and storage challenge
• Sensors and instruments as sources of large amounts of 

heterogeneous data
• Control of edge devices and remote access to sensor data 
• Edge devices typically have SDcards, much slower than SSD 

• Compute and store close to the sensors
• To avoid data transfers
• For privacy/security aspects 

• New data storage abstractions that enable access from the different 
devices 
• Object store versus file system? 
• Data reduction/lossy compression 

• Task flow versus data flow: 
data streaming

• Metadata and traceability 



17

18

d17

19

d17

20

d17

21

d17

22

d18

35

d19

36

d19

23

d20

25

d20

27

d21

29

d21

31

d22

33

d22 d23

24

d24

d25

26

d26

d23

28

d24

d25

30

d26

d23

32

d24

d25

34

d26

d23 d25

37

d24

38

d26

39

d27

d30

40

d31

42

d31

d33

79

d34

d36

44

d37

46

d37

d39

82

d40

d42

48

d43

50

d43

d45

83

d46 52

d48

53

d48

80

d50

54

d53

55

d53

81

d55

d56

41

d57

d58

43

d59

d56

45

d57

d58

47

d59

d56

49

d57

d58

51

d59

d56

d58d56

d58

56

d57

57

d59

58

d60

d63

59

d64

61

d64

d66

84

d67

d69

63

d70

65

d70

d72

86

d73

88

d73

d75

67

d76

69

d76

d78

90

d79

92

d79

71

d81

72

d81

94

d83

96

d83

73

d85

74

d85

98

d87

100

d87

75

d90

76

d90

101

d92

102

d92

d93

60

d94

d95

62

d96

d93

64

d94

d95

66

d96

d93

68

d94

d95

70

d96

d93d95d93

d95

d93

d95

77

d94

78

d96 d100d103

103

d104

d106d109

105

d110

107

d110

d112d115

109

d116

111

d116

113

d120

115

d120

117

d124

119

d124

121

d128

123

d128 124

d133

125

d133

d134d134 d134d134 d135

93

d136

95

d136

97

d137

99

d137

85

d138

87

d138

89

d139

91

d139 d140

d141

d142

d143

d140

d141

d142

d143

d140

d141

d142

d143

d140

d141

d142

d143

d141d143

d144

d147

104

d148

106

d148

d150

126

d151

d153

108

d154

110

d154

d156

130

d157

d159

112

d160

114

d160

d162

127

d163

d165

116

d166

118

d166

d168

128

d169

120

d171

122

d171

129

d173

d174

d175

d176

d177

d174

d175

d176

d177

d174

d175

d176

d177

d174

d175

d176

d177

d174

d175

d176

d177

d175d177

d181d184

131

d185

d187d190

133

d191

135

d191

d193d196

137

d197

139

d197

d199d202

141

d203

143

d203

d205d208

145

d209

147

d209

148

d213

149

d213d214d214 d214d214 d215

136

d216

138

d216

140

d217

142

d217

144

d218

146

d218

132

d219

134

d219d220

d221

d222

d223

d220

d221

d222

d223

d220

d221

d222

d223

d220

d221

d222

d223

d221 d223

d227 d230

150

d231

d233d236

151

d237

d239d242

152

d243

d245 d248

153

d249

154

d253

d254d254 d254 d254

createBlockTask  
qrTask  

transposeBlockTask  
dotTask  

littleQRTask  
multiplySingleBlockTask  

Orchestration challenges
• How to describe the workflows in such environment? Which is the 

right interface? 
• Focus: 

• Integration of computational workloads, with machine learning 
and data analytics 

• Intelligent runtime that can make
scheduling and allocation, 
data-transfer, and other decisions



Programming with PyCOMPSs/COMPSs

• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data
• Task based: task is the unit of work

• Builds a task graph at runtime that 
express potential concurrency

• Exploitation of parallelism
• … and of parallelism created later on

• Simple linear address space
• Agnostic of computing 

platform
• Runtime takes all scheduling

and  data transfer decisions

@task(c=INOUT)
def multiply(a, b, c):

c += a*b

initialize_variables()
startMulTime = time.time()
for i in range(MSIZE):

for j in range(MSIZE):
for k in range(MSIZE):

multiply (A[i][k], B[k][j], C[i][j])
compss_barrier()
mulTime = time.time() - startMulTime



Other decorators: Tasks’ constraints  

• Constraints enable to define HW or SW features required to execute a task
• Runtime performs the match-making between the task and the computing nodes
• Support for multi-core tasks and for tasks with memory constraints 
• Support for heterogeneity on the devices in the platform 

@constraint (MemorySize=1.0, ProcessorType =”ARM”, )
@task (c=INOUT)
def myfunc_in_the_edge (a, b, c):

...

@constraint (MemorySize=6.0, ProcessorPerformance=“5000”)
@task (c=INOUT)
def myfunc(a, b, c):

...



Other decorators: Tasks’ constraints and versions   

• Constraints enable to define HW or SW features required to execute a task
• Runtime performs the match-making between the task and the computing nodes
• Support for multi-core tasks and for tasks with memory constraints 
• Support for heterogeneity on the devices in the platform 

• Versions: Mechanism to support multiple implementations of a given behavior 
(polymorphism)
• Runtime selects to execute the task in the most appropriate device in the platform

@implement (source class=”myclass”, method=”myfunc”)
@constraint (MemorySize=1.0, ProcessorType =”ARM”)
@task (c=INOUT)
def myfunc_in_the_edge (a, b, c):

...

@constraint (MemorySize=6.0, ProcessorPerformance=“5000”)
@task (c=INOUT)
def myfunc(a, b, c):

...



Other decorators: linking with other 
programming models
• A task can be more than a sequential function

• A task in PyCOMPSs can be sequential, multicore or multi-node
• External binary invocation: wrapper function generated automatically
• Supports for alternative programming models: MPI and OmpSs

• Additional decorators:
• @binary(binary=“app.bin”)
• @ompss(binary=“ompssApp.bin”)
• @mpi(binary=“mpiApp.bin”, runner=“mpirun”, computingNodes=8)

• Can be combined with the @constraint and @implement decorators
@constraint (computingUnits= "248")
@mpi (runner="mpirun", computingNodes= ”16”, ...)
@task (returns=int, stdOutFile=FILE_OUT_STDOUT, ...) 
def nems(stdOutFile, stdErrFile):

pass

9



Failure management
• Default behaviour till now: 

• On task failure, retry the execution a number of times
• If failure persists, close the application safely 

• New interface than enables the programmer to give hints about failure 
management

• Options: RETRY, CANCEL_SUCCESSORS, FAIL, IGNORE
• Implications on file management:

• I.e, on IGNORE, output files: are generated empty
• Offers the possibility of task speculation on the execution of applications
• Possibility of ignoring part of the execution of the workflow, for example if a task 

fails in an unstable device 

@task(file_path=FILE_INOUT, on_failure='CANCEL_SUCCESSORS')
def task(file_path):

...
if cond :

raise Exception()



Integration with persistent memory
• Programmer may decide to make persistent specific objects in its 

code
• Persistent objects are managed same way as regular objects 
• Tasks can operate with them 

• Objects can be accessed/shared 
transparently in a distributed 
computing platform

a = SampleClass ()
a.make_persistent()
Print a.func (3, 4)

a.mytask()
compss_barrier()

o = a.another_object



Support for elasticity 
• Possibility to adapt the computing 

infrastructure depending on the 
actual workload

• Now also for SLURM managed 
systems

• Feature that contributes to a more 
effective use of resources

• Is very relevant in the edge, where 
power is a constraint 

Expanded SLURM Job X 
Initial SLURM Job X 

Master Node

Main App

m
p
Ss
A
p
p

Compute Node C

COMPSs
Worker

SLURM Manager

COMPSs Runtime

m
p
Ss
A
p
p

Compute Node B

COMPSs
Worker

m
p
Ss
A
p
p

Compute Node A

COMPSs Worker

Task Task

SLURM Connector

Request for a new node

SLURM Job Y 

Compute Node N
COMPSs Worker

Task Task

…

…
…

…

Update original job
SLURM creates 
the new job



Support for interactivity
• Jupyter notebooks: 

Easy to use interface for 
interactivity

• Where to map every 
component?
• Everything local 

• Prototyping and demos
• Running notebook and COMPSs runtime locally 

• Some tasks can be executed locally   
• Some tasks can run remotely 

• Data acquisition in edge devices 
• Remote execution of compute intensive tasks in large clusters

• Run browser in laptop and the notebook server and COMPSs runtime in a remote 
server
• Enables the interactive execution of large computational workflows 
• Issue with large HPC systems if login node does not offer remote connection 
• Smoother integration if JupyterHub available 



Integration with Machine Learning

• Thanks to the Python interface, the integration
with ML packages is smooth: 
• Tensorflow, PyTorch, ... 
• Tiramisu: transfer learning framework

Tensorflow + PyCOMPSs + dataClay

• dislib: Collection of machine learning algorithms developed on top of 
PyCOMPSs
• Unified interface, inspired in scikit-learn (fit-predict)
• Unified data acquisition methods and using 

an independent distributed data 
representation

• Parallelism transparent to the user –
PyCOMPSs parallelism hidden 

• Open source, available to the community 

dislib.bsc.es



COMPSs in a fog-to-cloud architecture
• Decentralized approach to deal with large amounts of data 

• New COMPSs runtime handles distribution, parallelism and heterogeneity
• Runtime deployed as a microservice in an agent:

• Agents are independent, can act as master or worker in an application 
execution, agents interact between them

• Hierarchical structure

• Data managed by dataClay, in a federated mode 
• Support for data recovery when fog nodes disappear 

• Fog-to-fog and Fog-to-cloud

• Developed in mF2C, used in CLASS 
and ELASTIC



Going beyond: what is missing

• Programming interfaces: 
• Explore graphical or higher-level interfaces to describe the workflows 

• How to better integrate the compute and data flows
• Integrate metadata, enable data traceability 
• Streaming 

• Better support for interactivity, data-steering 
• Add more intelligence to the runtime 

• Support for mapping sensors 
and actuators

• Not only performance aspects, 
resilience and energy efficiency

• Use of machine learning

Sensors
Instruments
Actuators

HPC 
Exascale computing

AI

Edge devices



Further Information
• Project page:  http://www.bsc.es/compss

• Documentation
• Virtual Appliance for testing & sample applications
• Tutorials

• Source Code
https://github.com/bsc-wdc/compss

• Docker Image
https://hub.docker.com/r/compss/compss-ubuntu16/

• Applications
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib

17

http://www.bsc.es/compss
https://github.com/bsc-wdc/compss
https://hub.docker.com/r/compss/compss-ubuntu16/
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib


18

Projects where COMPSs is involved

ELASTIC



www.bsc.es

Thanks! 



Challenges we are facing 
• Complex infrastructures

• Large number of nodes
• Nodes that appear and disappear 

• Heterogeneous
• Other relevant aspects: security and trust, power, ...

• Large amount of heterogeneous data from multiple 
sources. New storage technologies with different 
capabilities

• Need to orchestrate complex applications 
in such complex environment 

Sensors
Instruments
Actuators

HPC 
Exascale computing
Cloud

Edge devices

Fog devices



mF2c - Smart Fog Hub System

• Indoor navigation and recommender
solution at the Cagliari airport 

Flight AZ626 now 
boarding, gate B32

Sardinian 
handcraft

2

3

4

1

App install,
topics setting

Layer 0, cloud: OpenStack
Layer 1, fog aggregatot: Nuvla Box
Layer 2, fog: Laptop
Layer 3, IOT layer: Raspberry Pi, 
smartphones

Grant Agreement No 730929



Other use cases 

• Intelligent traffic management
• Advanced driving assistance 

systems

• Next Generation Autonomous 
Positioning (NGAP) 

• Advanced Driving Assistant 
System (ADAS) (obstacle 
detection) 

• Predictive maintenance 

V2V
V2I

Cloud 
Computing

V2C

Car Computing 
Resources

City Computing 
Resources

Co
m

pu
te

 C
on

tin
uu

m

Edge Com
puting



Why Python?
Python is powerful... and fast; 
plays well with others; 
runs everywhere; 
is friendly & easy to learn; 
is Open.*

• Emphasizes code readability, its syntax 
allows programmers to express concepts in 
fewer lines of code 

• Large community using it, including 
scientific and numeric 

• Large number of software modules available
• Very well integrated with data analytics and 

machine learning (Tensorflow, PyTorch, 
dask, scikit-learn,  ...) 

• Intersection with HPC and data analytics 
programming languages 

24* From python.org

Fortran

C/C++

Python

HPC

HPDA
R

Scala

SQL

Java

Julia


