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What was I doing when I first met Yale? 



Challenges in highly distributed infrastructures

• Resources that appear and disappear
• How to dynamically add/remove nodes to the infrastructure 

• Heterogeneity 
• Different HW characteristics (performance, memory, etc)
• Different architectures -> compilation issues  

• Network 
• Different types of networks 
• Instability

• Trust and Security
• Power constraints from the devices 

in the edge 

Sensors
Instruments
Actuators

HPC 
Exascale computing
Cloud

Edge devices

Fog devices

AI everywhere



Data and storage challenge
• Sensors and instruments as sources of large amounts of 

heterogeneous data
• Control of edge devices and remote access to sensor data 
• Edge devices typically have SDcards, much slower than SSD 

• Compute and store close to the sensors
• To avoid data transfers
• For privacy/security aspects 

• New data storage abstractions that enable access from the different 
devices 
• Object store versus file system? 
• Data reduction/lossy compression 

• Task flow versus data flow: 
data streaming

• Metadata and traceability 
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createBlockTask  
qrTask  

transposeBlockTask  
dotTask  

littleQRTask  
multiplySingleBlockTask  

Orchestration challenges
• How to describe the workflows in such environment? Which is the 

right interface? 
• Focus: 

• Integration of computational workloads, with machine learning 
and data analytics 

• Intelligent runtime that can make
scheduling and allocation, 
data-transfer, and other decisions



Programming with PyCOMPSs/COMPSs

• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data
• Task based: task is the unit of work

• Builds a task graph at runtime that 
express potential concurrency

• Exploitation of parallelism
• … and of parallelism created later on

• Simple linear address space
• Agnostic of computing 

platform
• Runtime takes all scheduling

and  data transfer decisions

@task(c=INOUT)
def multiply(a, b, c):

c += a*b

initialize_variables()
startMulTime = time.time()
for i in range(MSIZE):

for j in range(MSIZE):
for k in range(MSIZE):

multiply (A[i][k], B[k][j], C[i][j])
compss_barrier()
mulTime = time.time() - startMulTime



Other decorators: Tasks’ constraints  

• Constraints enable to define HW or SW features required to execute a task
• Runtime performs the match-making between the task and the computing nodes
• Support for multi-core tasks and for tasks with memory constraints 
• Support for heterogeneity on the devices in the platform 

@constraint (MemorySize=1.0, ProcessorType =”ARM”, )
@task (c=INOUT)
def myfunc_in_the_edge (a, b, c):

...

@constraint (MemorySize=6.0, ProcessorPerformance=“5000”)
@task (c=INOUT)
def myfunc(a, b, c):

...



Other decorators: Tasks’ constraints and versions   

• Constraints enable to define HW or SW features required to execute a task
• Runtime performs the match-making between the task and the computing nodes
• Support for multi-core tasks and for tasks with memory constraints 
• Support for heterogeneity on the devices in the platform 

• Versions: Mechanism to support multiple implementations of a given behavior 
(polymorphism)
• Runtime selects to execute the task in the most appropriate device in the platform

@implement (source class=”myclass”, method=”myfunc”)
@constraint (MemorySize=1.0, ProcessorType =”ARM”)
@task (c=INOUT)
def myfunc_in_the_edge (a, b, c):

...

@constraint (MemorySize=6.0, ProcessorPerformance=“5000”)
@task (c=INOUT)
def myfunc(a, b, c):

...



Other decorators: linking with other 
programming models
• A task can be more than a sequential function

• A task in PyCOMPSs can be sequential, multicore or multi-node
• External binary invocation: wrapper function generated automatically
• Supports for alternative programming models: MPI and OmpSs

• Additional decorators:
• @binary(binary=“app.bin”)
• @ompss(binary=“ompssApp.bin”)
• @mpi(binary=“mpiApp.bin”, runner=“mpirun”, computingNodes=8)

• Can be combined with the @constraint and @implement decorators
@constraint (computingUnits= "248")
@mpi (runner="mpirun", computingNodes= ”16”, ...)
@task (returns=int, stdOutFile=FILE_OUT_STDOUT, ...) 
def nems(stdOutFile, stdErrFile):

pass
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Failure management
• Default behaviour till now: 

• On task failure, retry the execution a number of times
• If failure persists, close the application safely 

• New interface than enables the programmer to give hints about failure 
management

• Options: RETRY, CANCEL_SUCCESSORS, FAIL, IGNORE
• Implications on file management:

• I.e, on IGNORE, output files: are generated empty
• Offers the possibility of task speculation on the execution of applications
• Possibility of ignoring part of the execution of the workflow, for example if a task 

fails in an unstable device 

@task(file_path=FILE_INOUT, on_failure='CANCEL_SUCCESSORS')
def task(file_path):

...
if cond :

raise Exception()



Integration with persistent memory
• Programmer may decide to make persistent specific objects in its 

code
• Persistent objects are managed same way as regular objects 
• Tasks can operate with them 

• Objects can be accessed/shared 
transparently in a distributed 
computing platform

a = SampleClass ()
a.make_persistent()
Print a.func (3, 4)

a.mytask()
compss_barrier()

o = a.another_object



Support for elasticity 
• Possibility to adapt the computing 

infrastructure depending on the 
actual workload

• Now also for SLURM managed 
systems

• Feature that contributes to a more 
effective use of resources

• Is very relevant in the edge, where 
power is a constraint 

Expanded SLURM Job X 
Initial SLURM Job X 
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Support for interactivity
• Jupyter notebooks: 

Easy to use interface for 
interactivity

• Where to map every 
component?
• Everything local 

• Prototyping and demos
• Running notebook and COMPSs runtime locally 

• Some tasks can be executed locally   
• Some tasks can run remotely 

• Data acquisition in edge devices 
• Remote execution of compute intensive tasks in large clusters

• Run browser in laptop and the notebook server and COMPSs runtime in a remote 
server
• Enables the interactive execution of large computational workflows 
• Issue with large HPC systems if login node does not offer remote connection 
• Smoother integration if JupyterHub available 



Integration with Machine Learning

• Thanks to the Python interface, the integration
with ML packages is smooth: 
• Tensorflow, PyTorch, ... 
• Tiramisu: transfer learning framework

Tensorflow + PyCOMPSs + dataClay

• dislib: Collection of machine learning algorithms developed on top of 
PyCOMPSs
• Unified interface, inspired in scikit-learn (fit-predict)
• Unified data acquisition methods and using 

an independent distributed data 
representation

• Parallelism transparent to the user –
PyCOMPSs parallelism hidden 

• Open source, available to the community 

dislib.bsc.es



COMPSs in a fog-to-cloud architecture
• Decentralized approach to deal with large amounts of data 

• New COMPSs runtime handles distribution, parallelism and heterogeneity
• Runtime deployed as a microservice in an agent:

• Agents are independent, can act as master or worker in an application 
execution, agents interact between them

• Hierarchical structure

• Data managed by dataClay, in a federated mode 
• Support for data recovery when fog nodes disappear 

• Fog-to-fog and Fog-to-cloud

• Developed in mF2C, used in CLASS 
and ELASTIC



Going beyond: what is missing

• Programming interfaces: 
• Explore graphical or higher-level interfaces to describe the workflows 

• How to better integrate the compute and data flows
• Integrate metadata, enable data traceability 
• Streaming 

• Better support for interactivity, data-steering 
• Add more intelligence to the runtime 

• Support for mapping sensors 
and actuators

• Not only performance aspects, 
resilience and energy efficiency

• Use of machine learning

Sensors
Instruments
Actuators

HPC 
Exascale computing

AI

Edge devices



Further Information
• Project page:  http://www.bsc.es/compss

• Documentation
• Virtual Appliance for testing & sample applications
• Tutorials

• Source Code
https://github.com/bsc-wdc/compss

• Docker Image
https://hub.docker.com/r/compss/compss-ubuntu16/

• Applications
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib
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http://www.bsc.es/compss
https://github.com/bsc-wdc/compss
https://hub.docker.com/r/compss/compss-ubuntu16/
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib


18

Projects where COMPSs is involved

ELASTIC



www.bsc.es

Thanks! 



Challenges we are facing 
• Complex infrastructures

• Large number of nodes
• Nodes that appear and disappear 

• Heterogeneous
• Other relevant aspects: security and trust, power, ...

• Large amount of heterogeneous data from multiple 
sources. New storage technologies with different 
capabilities

• Need to orchestrate complex applications 
in such complex environment 

Sensors
Instruments
Actuators

HPC 
Exascale computing
Cloud

Edge devices

Fog devices



mF2c - Smart Fog Hub System

• Indoor navigation and recommender
solution at the Cagliari airport 

Flight AZ626 now 
boarding, gate B32

Sardinian 
handcraft

2

3

4

1

App install,
topics setting

Layer 0, cloud: OpenStack
Layer 1, fog aggregatot: Nuvla Box
Layer 2, fog: Laptop
Layer 3, IOT layer: Raspberry Pi, 
smartphones

Grant Agreement No 730929



Other use cases 

• Intelligent traffic management
• Advanced driving assistance 

systems

• Next Generation Autonomous 
Positioning (NGAP) 

• Advanced Driving Assistant 
System (ADAS) (obstacle 
detection) 

• Predictive maintenance 

V2V
V2I

Cloud 
Computing

V2C

Car Computing 
Resources

City Computing 
Resources
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Why Python?
Python is powerful... and fast; 
plays well with others; 
runs everywhere; 
is friendly & easy to learn; 
is Open.*

• Emphasizes code readability, its syntax 
allows programmers to express concepts in 
fewer lines of code 

• Large community using it, including 
scientific and numeric 

• Large number of software modules available
• Very well integrated with data analytics and 

machine learning (Tensorflow, PyTorch, 
dask, scikit-learn,  ...) 

• Intersection with HPC and data analytics 
programming languages 

24* From python.org

Fortran

C/C++

Python

HPC

HPDA
R

Scala

SQL

Java

Julia


