Barcelona

Supercomputing EXCELENCIA
Center SEVERO
OCHOA

Centro Nacional de Supercomputacion B

Enabling the convergence of
HPC and Data Analytics in
highly distributed
computing infrastructures

Rosa M Badia

Yale: 80 in 2019, Barcelona

W a;c was | doing when | first met
Yale:

CellSs — StarSS< GridSs
/ / \ ClusterSs

SMPSs s ClearSpeedSs

+ StarSs » Portability
— “Same” source code runs on “any” machine
— A*“node” level programming model . bO‘;:timizoagf task implementations will result in
. ; tter performance.
a C{Fortr_an * dlrect_lves . — “Single source” for maintained version of a
— Nicely integrates in hybrid MPI/StarSs application

Natural support for heterogeneity

« Performance

+ Programmability — Asynchronous (data-flow) execution and locality

— Incremental parallelization/restructure awareness

— Abstract/separate algorithmic issues from — Intelligent Runtime: specific for each type of
resources target platform.

— Disciplined programming + Automatically extracts and exploits parallelism

+ Matches computations to resources

(- Supercomputing
Jesus Labarta. StarSs @ PRACE WP8. LRZ. Feb. 2010 b o e oo Bpwcompus

Barcelona

Supercomputing

Center

Cenire Nacional de Suparcampulacion

Challenges in highly distributed infrastructures

* Resources that appear and disappear
* How to dynamically add/remove nodes to the infrastructure

* Heterogeneity
» Different HW characteristics (performance, memory, etc)
 Different architectures -> compilation issues

Network
* Different types of networks
* Instability

Trust and Security o
(
e Power constraints from the devices AN ev®

in the edge

Exascale computing
Cloud

Sensors
Instruments
Actuators

Fog devices

e

Edge devices

Data and storage challenge

e Sensors and instruments as sources of large amounts of
heterogeneous data
* Control of edge devices and remote access to sensor data
* Edge devices typically have SDcards, much slower than SSD

 Compute and store close to the sensors
* To avoid data transfers
* For privacy/security aspects

New data storage abstractions that enable access from the different
devices

* Object store versus file system?

» Data reduction/lossy compression

e Task flow versus data flow:
data streaming

Metadata and traceability

Barcelona
Supercomplmny
Ccnh

Orchestration challenges

e How to describe the workflows in such environment? Which is the

right interface?

* Focus:

* Integration of computational workloads, with machine learning

and data analytics

* Intelligent runtime that can make
scheduling and allocation,
data-transfer, and other decisions

Barcelona

Supercomputing

Center

Cenire Nacional de Suparcampulacion

WSS

R

,__4¢]

o ~§mm@ﬁfﬂwi

S e i N OTO ¢
s e ¢ aww A »ag
oo ety

b\ —

—

Sy o i
‘ (e eeren
- - TS

>

Programming with PyCOMPSs/COMPSs

* Sequential programming, parallel execution

A pg@

* General purpose programming language + annotatlons/hlnts

* To identify tasks and directionality of data
* Task based: task is the unit of work

Exploitation of parallelism

 ...and of parallelism created later on

Simple linear address space

Agnostic of computing
platform

* Runtime takes all scheduling
and data transfer decisions

Barcelona

Supercomputing

Center

Centro Nacional de Suparcampulacion

Builds a task graph at runtime that
express potential concurrency

@task (c=INOUT)
def multiply(a, b, c):
c += a*b

initialize variables()
startMulTime = time.time()
for i in range(MSIZE):

for j in range(MSIZE):

for k in range(MSIZE):
multiply (A[i][k], B[k][J], C[i]I

compss_barrier ()
mulTime = time.time() - startMulTime

Other decorators: Tasks’ constraints

e Constraints enable to define HW or SW features required to execute a task
* Runtime performs the match-making between the task and the computing nodes
e Support for multi-core tasks and for tasks with memory constraints
* Support for heterogeneity on the devices in the platform

@Qconstraint (MemorySize=6.0, ProcessorPerformance=“5000")
@task (c=INOUT)
def myfunc(a, b, c¢):

@Qconstraint (MemorySize=1.0, ProcessorType ="ARM”,)
@task (c=INOUT)
def myfunc in the edge (a, b, c):

Barcelona

Supercomputing

Center

Centro Nacional de Suparcampulacion

Other decorators: Tasks’ constraints and versions

e Constraints enable to define HW or SW features required to execute a task
* Runtime performs the match-making between the task and the computing nodes
e Support for multi-core tasks and for tasks with memory constraints
* Support for heterogeneity on the devices in the platform

e Versions: Mechanism to support multiple implementations of a given behavior
(polymorphism)

* Runtime selects to execute the task in the most appropriate device in the platform
@Qconstraint (MemorySize=6.0, ProcessorPerformance=“5000")

@task (c=INOUT)
def myfunc(a, b, c¢):

@Qimplement (source class="myclass”, method="myfunc”)

@Qconstraint (MemorySize=1.0, ProcessorType ="ARM")
@task (c=INOUT)

def myfunc in the edge (a, b, c):

Barcelona
Supercomputing
Center

Other decorators: linking with other
programming models

* A task can be more than a sequential function
e Atask in PyCOMPSs can be sequential, multicore or multi-node
* External binary invocation: wrapper function generated automatically
* Supports for alternative programming models: MPl and OmpSs

* Additional decorators:
e @binary(binary="“app.bin”)
 @ompss(binary=“ompssApp.bin”)
 @mpi(binary="mpiApp.bin”, runner=“mpirun”, computingNodes=8)

* Can be combined with the @constraint and @implement decorators

@Qconstraint (computingUnits= "248")
@mpi (runner="mpirun", computingNodes= "16", ...)
@task (returns=int, stdOutFile=FILE_ OUT STDOUT, ...)
def nems(stdOutFile, stdErrFile):

pass

Failure management

Default behaviour till now:

* On task failure, retry the execution a number of times

* If failure persists, close the application safely
* New interface than enables the programmer to give hints about failure
management

@task(file path=FILE_ INOUT, on_failure='CANCEL_SUCCESSORS')
def task(file path):

if cond :
raise Exception()

* Options: RETRY, CANCEL_SUCCESSORS, FAIL, IGNORE

* Implications on file management:
* |.e, on IGNORE, output files: are generated empty

» Offers the possibility of task speculation on the execution of applications

* Possibility of ignoring part of the execution of the workflow, for example if a task
fails in an unstable device

Barcelona

Supercomputing

Center

Centrg Naciona! de Suparcampulacion

Integration with persistent memory

* Programmer may decide to make persistent specific objects in its

code

* Persistent objects are managed same way as regular objects

e Tasks can operate with them

a = SampleClass ()
a.make persistent()
Print a.func (3, 4)

a.mytask()
compss_barrier ()

o = a.another object

* Objects can be accessed/shared
transparently in a distributed
computing platform

Barcelon
((5up rcomputing

COMPSs Application PyCOMPSs Application
(Java) (Python)

PyCOMPSs

COMPSs

Support for elasticity

* Possibility to adapt the computing
infrastructure depending on the
actual workload

 Now also for SLURM managed £
systems £

* Feature that contributes to a more o
effective use of resources

* Isvery relevant in the edge, where o

power is a constraint

Barcelona

Supercomputing

Center

Centro Nacional de Suparcampulacion

—Running & Ready Tasks =~ =——Computing Nodes

100 200 300

Time (seconds)

Expanded SLURM Job X

Initial SLURM Job X

Master Node

CAarmniita NlAdA C

CAarmniita NlAadA D

Main App
COMPSs Runtime

Compute Node A

COMPSs Worker

SLURM Job Y

Compute Node N

SLURM Connector

COMPSs Worker

Request for a new node

Update original job

SLURM Manager

SLURM creates
the new job

400

500

Number of Computing Nodes

Support for interactivity

e Jupyter notebooks:

Easy to use interface for
interactivity

Tasks
Jupyteryotebook

Browser

* Where to map every

Notebook @
PSs runtime
component? S L
) Runtime. w
* Everything local

results
B
* Prototyping and demos O

* Running notebook and COMPSs runtime locally
* Some tasks can be executed locally
e Some tasks can run remotely
* Data acquisition in edge devices
Remote execution of compute intensive tasks in large clusters

* Run browser in laptop and the notebook server and COMPSs runtime in a remote
server

* Enables the interactive execution of large computational workflows

* Issue with large HPC systems if login node does not offer remote connection
* Smoother integration if JupyterHub available

Barcelona

Supercomputing

Center

Centra Nacional de Suparcampulacion

Integration with Machine Learning

* Thanks to the Python interface, the integration

with ML packages is smooth: o~ cll @ ¢
* Tensorflow, PyTorch, ... \
* Tiramisu: transfer learning framework . , -
Tensorflow + PyCOMPSs + dataClay A b 8-
= S ; "5. -

 dislib: Collection of machine learning algorithms developed on top of
PyCOMPSS K-M DBSCAN G i ixt

e Unified interface, inspired in scikit-learn (fit-predict) .@
e Unified data acquisition methods and using '55 ' ainat?
an independent distributed data @ @ @

representation

* Parallelism transparent to the user — 3
(E:’:.m.:'z"’"”"“"’ _dislib.bsc.es Distributed 3
(o S @ D I S LI B Computmg L|brary'

PyCOMPSs parallelism hidden
* Open source, available to the community

COMPSs in a fog-to-cloud architecture

* Decentralized approach to deal with large amounts of data FeC

* New COMPSs runtime handles distribution, parallelism and heterogeneity

* Runtime deployed as a microservice in an agent:

* Agents are independent, can act as master or worker in an application
execution, agents interact between them

* Hierarchical structure
OpeﬂFOg

* Data managed by dataClay, in a federated mode
* Support for data recovery when fog nodes disappear

* Fog-to-fog and Fog-to-cloud

* Developed in mF2C, used in CLASS
and ELASTIC g

A ent

F
s
J

=

Agent

COMPSs l

Management

Cloud layer

——

BB

! Sync.
: control
! data

Agent
m Management

H <
: S
Agent Ag

. dataclay |
Barcelona -
Supercomputing

Contw . [

] Fog ayer

Internet of Things]

MNacional de Suparcampu

Going beyond: what is missing

Programming interfaces:
* Explore graphical or higher-level interfaces to describe the workflows

How to better integrate the compute and data flows
* Integrate metadata, enable data traceability
* Streaming

Better support for interactivity, data-steering

Add more intelligence to the runtime

e Support for mapping sensors
and actuators

* Not only performance aspects,
resilience and energy efficiency

HPC
Exascale computing

e Use of machine learning

Nr-dde
P A
\ RS
Bai N
Su))
Cel
Cen

Al

Sensors
Instruments

Actuators Edge devices

Further Information

* Project page: http://www.bsc.es/compss
* Documentation

e Virtual Appliance for testing & sample applications
e Tutorials

e Source Code
O https://github.com/bsc-wdc/compss

. Docker Image

. Appllcatlons

O https://github.com/bsc-wdc/apps
o https://github.com/bsc-wdc/dislib

Barcelon
Su, p rcompuﬂ g

17

http://www.bsc.es/compss
https://github.com/bsc-wdc/compss
https://hub.docker.com/r/compss/compss-ubuntu16/
https://github.com/bsc-wdc/apps
https://github.com/bsc-wdc/dislib

Projects where COMPSs is involved

,:".': 5 LAND =

ELASTIC

. ‘ Exasca le Quantiflcation of Uncertainties for
and Science Simulation

Technology

e -‘.’ JJULICH [

T R
EXPERTISE RN T ot
O
FUJITSU

Barcelona
Supercomputing

Center

Cenire Nacional de Suparcampulacion

EXCELENCIA
Barcelona S
Supercomputing

Center
Centro Nacional de Supercomputacion

Challenges we are facing

 Complex infrastructures
* Large number of nodes
* Nodes that appear and disappear
* Heterogeneous
e Other relevant aspects: security and trust, power, ...

e Large amount of heterogeneous data from multiple
sources. New storage technologies with different
capabilities

* Need to orchestrate complex applications HPC
in such complex environment

Z >€ensors N\ g Fog devices

/ Instruments
(Actuators Edge devices

Exascale computing
Cloud

@:

Appinstall,
topics setting

* Indoor navigation and recommender
solution at the Cagliari airport

Layer O, cloud: OpenStack

Layer 1, fog aggregatot: Nuvla Box
Layer 2, fog: Laptop

Layer 3, IOT layer: Raspberry Pi,
smartphones

Barcelona
Supommpuﬂng

Cer! MNaciona! de Suparcampulacion

@

acts as cloud
engine for data
analysis

layer O

acts as fog
aggregator

layer 1

application act as fog worker
H data flow ;

layer 2

10T layer

aaaaaaaaaa

DDDDD

Other use cases

(|
”lluln

LLAg 1Y

L")

* Intelligent traffic management * Next Generation Autonomous
Positioning (NGAP)

e Advanced driving assistance
e Advanced Driving Assistant

systems
System (ADAS) (obstacle
detection)
N Cloud . . .
: é;npuﬁns) * Predictive maintenance
% szc) m
(O | (O8)umE
S — | — 3
)) carCo in =
~ | QWVG v Oj :!::sou;::‘tfsut : ®
= = =
s g e

Barcelona

Supercomputing

Center

Cenire Nacional de Suparcampulacion

Why Python?

Python is powerful... and fast;
plays well with others;
runs everywhere;
is friendly & easy to learn;
is Open.*
 Emphasizes code readability, its syntax

allows programmers to express concepts in
fewer lines of code

e Large community using it, including
scientific and numeric

* Large number of software modules available

* Very well integrated with data analytics and
machine learning (Tensorflow, PyTorch,
dask, scikit-learn, ...)

* Intersection with HPC and data analytics
programming languages

@ garcelona
upercomputing
Center
Ceniro Nacional de Suparcampulacion * F ro m pyth O n . O rg

Julig

SQL

Java

Sca\a

24

