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Viking Yale

…“Ö”… 
(…Island ahead…)
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Columbus and Huffman (unfairly) 
got Credit for Viking Discoveries

=

=

Source of inspiration: Yale Patt
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We know that Vikings were on Mars
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But Vikings Landed on the Moon 
before Americans did too
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Scaling (as we know it) is ending soon… 

A radical new way of how we think about 
compute efficiency is needed
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Per’s Transformation Hierarchy

ISA + primitives 

Resource Management

Microarchitecture

Parallel programming model plus semantic 
information 
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Outline
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Background

Runtime-Assisted Cache 
Management

Concluding Remarks

Runtime-Assisted Power 
Management
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Task-based Dataflow Prog. Models

TaskA

TaskCTaskB

#pragma css task output(a)
void TaskA( float a[M][M]);

#pragma css task input(a)
void TaskB( float a[M][M]);

#pragma css task input(a)
void TaskC( float a[M][M]);

• Programmer annotations for task dependences
• Annotations used by runtime system for scheduling
• Dataflow task graph constructed dynamically

Convey semantic information to runtime for efficient
scheduling
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Runtime Management of 
Cache Hierarchies

View: Runtime is part of the chip and responsible for
management of the cache hierarchy
- in analogy with OS managing virtual memory

Runtime-assisted cache management:
• Runtime-assisted cache coherence optimizations
• Runtime-assisted dead-block management
• Runtime-assisted global cache management
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Runtime-Assisted Coherence 
Management [IPDPS 2014]

Dependency annotations allow for optimizations with high 
accuracy (like in message passing)

Prefetching

Migratory sharing
optimization

Bulk data transfer Prod Cons

Output 
A[…]

Input 
A[…]

Prod Cons

Output 
A[…]

Input 
A[…]

T1 T2

Inout 
A[…]

Inout 
A[…]
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Impact on Memory Stall Time

Remote
Upgrade
LLC sha
LLC priv
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can yield significant gains 
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Runtime-Assisted Dead-Block 
Management – Motivation

• Most Last-Level-Cache blocks are dead consuming 
precious cache space

• State-of-the-art schemes: prediction based on past 
behavior

• RADAR’s approach: Semantic information + prediction
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Overview of RADAR [HPCA 2017]

Three schemes:
• Look Ahead (LA): Use data-dependce graph for prediction
• Look Back (LB): Use past region access statistics
• Combined: LA ∩ LB and LA∪LB

Specify Task and its
Region Accesses

Is Region dead
after current access?

Evict (demote to LRU) 
region from LLC
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Exec. Time Improvements
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Look-Ahead Look-Back RADAR-Combined

Memory bound apps provide significant gains
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Outline
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Background

Runtime-Assisted Cache 
Management

Concluding Remarks

Runtime-Assisted Power 
Management
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QoS-driven Resource Management –
Background [IPDPS 2019]

18

By using QoS targets, we can throttle
processor resources to minimize energy
consumption

Comp. Mem.

App1 Execution Time QoS1

Comp. Mem.

App2 Execution Time QoS2

Core1
App1

DVFS
f1

w1 w2

Last Level Cache

Partitioning

Core2
App2

DVFS
f2

Goal: Trade off resources to minimize energy 
consumption while meeting QoS targets 
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Overview 
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Phase 
ChangeSW
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Partitioning 
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DVFS Core2
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Perf. 
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(Auxiliary Tag 
Directory)
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Management 

Algorithm)
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Searching the Configuration Space
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Phase 
Change

RMA

1
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5
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w
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W

Minimum 
Frequency

QoS 
Function
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W

EPI

Energy 
Model

Global Optimization 
Algorithm

1 2 3 4 5

W

Misses

Perf.
Model 
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Energy Saving Results (Relaxed QoS)
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Partitioning (Perfect Model)
Partitioning (Realistic Model + OH)
Combined (Perfect Model)
Combined (Realistic Model + OH)

Save up to 28% of energy with 30% reduced IPS target (AVG: 20%)

Static Volt.-Freq. Scaling
DVFS (Perfect Model)   
DVFS (Realistic Model + OH)
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Outline
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Background

Runtime-Assisted Cache 
Management

Concluding Remarks

Runtime-Assisted Power 
Management
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Concluding Remarks

ISA + primitives 

Resource Management

Microarchitecture

Programming model plus semantic information 

MECCA team members: Alexandra Angerd, Mohammad Waqar Azhar, Nadja Holtryd, 
Madhavan Manivannan, Mehrzad Nejat, Vasileios Papaefstathiou, Risat Pathan,  
Miquel Pericàs and Petros Voudouris


