
Yale 80 Celebration – Per Stenstrom © 2019

Cross-Layer Driven
Computer Architecture Optimizations

Per Stenström

Chalmers University of Technology
Göteborg, Sweden

Yale 80 Celebration – Per Stenstrom © 2019

Viking Yale

…“Ö”…
(…Island ahead…)

Yale 80 Celebration – Per Stenstrom © 2019

Columbus and Huffman (unfairly)
got Credit for Viking Discoveries

=

=

Source of inspiration: Yale Patt

Yale 80 Celebration – Per Stenstrom © 2019

We know that Vikings were on Mars

Yale 80 Celebration – Per Stenstrom © 2019

But Vikings Landed on the Moon
before Americans did too

Yale 80 Celebration – Per Stenstrom © 2019

Program

ISA

Problem

Yale’s Transformation Hierarchy

Algorithm

Microarchitecture

Circuits

Electrons

Yale 80 Celebration – Per Stenstrom © 2019

Scaling (as we know it) is ending soon…

A radical new way of how we think about
compute efficiency is needed

Yale 80 Celebration – Per Stenstrom © 2019

Per’s Transformation Hierarchy

ISA + primitives

Resource Management

Microarchitecture

Parallel programming model plus semantic
information

Yale 80 Celebration – Per Stenstrom © 2019

Outline

9

Background

Runtime-Assisted Cache
Management

Concluding Remarks

Runtime-Assisted Power
Management

Yale 80 Celebration – Per Stenstrom © 2019

Task-based Dataflow Prog. Models

TaskA

TaskCTaskB

#pragma css task output(a)
void TaskA(float a[M][M]);

#pragma css task input(a)
void TaskB(float a[M][M]);

#pragma css task input(a)
void TaskC(float a[M][M]);

• Programmer annotations for task dependences
• Annotations used by runtime system for scheduling
• Dataflow task graph constructed dynamically

Convey semantic information to runtime for efficient
scheduling

Yale 80 Celebration – Per Stenstrom © 2019

Runtime Management of
Cache Hierarchies

View: Runtime is part of the chip and responsible for
management of the cache hierarchy
- in analogy with OS managing virtual memory

Runtime-assisted cache management:
• Runtime-assisted cache coherence optimizations
• Runtime-assisted dead-block management
• Runtime-assisted global cache management

Yale 80 Celebration – Per Stenstrom © 2019

Runtime-Assisted Coherence
Management [IPDPS 2014]

Dependency annotations allow for optimizations with high
accuracy (like in message passing)

Prefetching

Migratory sharing
optimization

Bulk data transfer Prod Cons

Output
A[…]

Input
A[…]

Prod Cons

Output
A[…]

Input
A[…]

T1 T2

Inout
A[…]

Inout
A[…]

Yale 80 Celebration – Per Stenstrom © 2019

Impact on Memory Stall Time

Remote
Upgrade
LLC sha
LLC priv

0

20

40

60

80

100

120

Cholesky

BL D SI D+SI SP SP+D+SI
0

20

40

60

80

100

120

Matmul

BL D SI D+SI SP SP+D+SI

0

20

40

60

80

100

120

SparseLU

BL D SI D+SI SP SP+D+SI
0

20

40

60

80

100

120

Qr

BL D SI D+SI SP SP+D+SI
Cross-layer coherence management

can yield significant gains

Yale 80 Celebration – Per Stenstrom © 2019

Runtime-Assisted Dead-Block
Management – Motivation

• Most Last-Level-Cache blocks are dead consuming
precious cache space

• State-of-the-art schemes: prediction based on past
behavior

• RADAR’s approach: Semantic information + prediction

Yale 80 Celebration – Per Stenstrom © 2019

Overview of RADAR [HPCA 2017]

Three schemes:
• Look Ahead (LA): Use data-dependce graph for prediction
• Look Back (LB): Use past region access statistics
• Combined: LA ∩ LB and LA∪LB

Specify Task and its
Region Accesses

Is Region dead
after current access?

Evict (demote to LRU)
region from LLC

Yale 80 Celebration – Per Stenstrom © 2019

Exec. Time Improvements

cholesky matmul sparselu gauss jacobi redblack Average
80

84

88

92

96

100
Ex

ec
ut

io
n

Ti
m

e
no

rm
al

iz
ed

to
 L

R
U

 (%
)

Look-Ahead Look-Back RADAR-Combined

Memory bound apps provide significant gains

Yale 80 Celebration – Per Stenstrom © 2019

Outline

17

Background

Runtime-Assisted Cache
Management

Concluding Remarks

Runtime-Assisted Power
Management

Yale 80 Celebration – Per Stenstrom © 2019

QoS-driven Resource Management –
Background [IPDPS 2019]

18

By using QoS targets, we can throttle
processor resources to minimize energy
consumption

Comp. Mem.

App1 Execution Time QoS1

Comp. Mem.

App2 Execution Time QoS2

Core1
App1

DVFS
f1

w1 w2

Last Level Cache

Partitioning

Core2
App2

DVFS
f2

Goal: Trade off resources to minimize energy
consumption while meeting QoS targets

Yale 80 Celebration – Per Stenstrom © 2019

Overview

19

Phase
ChangeSW

HW

Every
monitoring
interval
(on each
core)

(IPC)

Cache
Miss
Profile

Configure

f1
* f2

*w1
*

w2
*

A
T
D

Last Level Cache
A
T
D

Partitioning
Bitmask

Partitioning
Bitmask

Core1
(App1)

Perf.
Counters

DVFS Core2
(App2)

Perf.
Counters

DVFS

(Auxiliary Tag
Directory)

RMA

(Resource
Management

Algorithm)

Yale 80 Celebration – Per Stenstrom © 2019

Searching the Configuration Space

20

Phase
Change

RMA

1

3

5

1 2 3 4 5

w

IPS

ATD

1 2 3 4 5

W

Minimum
Frequency

QoS
Function

1 2 3 4 5

W

EPI

Energy
Model

Global Optimization
Algorithm

1 2 3 4 5

W

Misses

Perf.
Model

Yale 80 Celebration – Per Stenstrom © 2019

Energy Saving Results (Relaxed QoS)

21

Partitioning (Perfect Model)
Partitioning (Realistic Model + OH)
Combined (Perfect Model)
Combined (Realistic Model + OH)

Save up to 28% of energy with 30% reduced IPS target (AVG: 20%)

Static Volt.-Freq. Scaling
DVFS (Perfect Model)
DVFS (Realistic Model + OH)

Yale 80 Celebration – Per Stenstrom © 2019

Outline

22

Background

Runtime-Assisted Cache
Management

Concluding Remarks

Runtime-Assisted Power
Management

Yale 80 Celebration – Per Stenstrom © 2019

Concluding Remarks

ISA + primitives

Resource Management

Microarchitecture

Programming model plus semantic information

MECCA team members: Alexandra Angerd, Mohammad Waqar Azhar, Nadja Holtryd,
Madhavan Manivannan, Mehrzad Nejat, Vasileios Papaefstathiou, Risat Pathan,
Miquel Pericàs and Petros Voudouris

