Two Roads to Parallelism:
Compilers and Libraries

Lawrence Rauchwerger

@ol

Smarter computing.
Texas A&M University

Parallel Computing

“Parasol

« It's back (again) and ubiquitous
 We have the hardware (multicore
petascale)

« Parallel software + Productivity: not yet...
« And now ML needsiit ...

Our Road towards a productive parallel software
development environment ‘

For Existing Serial Programs

“Parasol

Previous Approaches
- Use Instruction Level Parallelism (ILP): HW + SW
o compiler (automatic) BUT not scalable
- Thread (Loop) Level (Data) Parallelism: HW+SW

o compiler (automatic) BUT insufficient coverage
O manual annotations more scalable but labor intensive

Our Approach

- Hybrid Analysis: A seamless bridge of static and dynamic
program analysis for loop level parallelization

o USR - a powerful IR for irregular application
O Speculation as needed for dynamic analysis 3

“Parasol

For New Programs

Previous Approaches

- Write parallel programs from scratch
- Use parallel language, library, annotations
- Hard Work !

Our Approach
- STAPL: Parallel Programming Environment

O Library of parallel algorithms, distributed containers,
patterns and run-time system

o Used in PDT, an important app for DOE & Nuclear
Engineers, influenced Intel’'s TBB

O ...and perhaps similar to Tensorflow

Parallelizing Compilers

“Parasol

Auto-Parallelization of Sequential Programs
- Around for 30+ years: UIUC, Rice, Stanford, KAI, etc.

- Requires complex static analysis + other technology
- Not widely adopted

Our Approach
- Initially: speculative parallelization
- Better: Hybrid Analysis is best of both: static + dynamic

- Aspects of these techniques used in mainstream
compilers and STM based systems.

- Excellent results — Major Effort — Don’t try at home

Static Data Dependence Analysis:
An Essential Tool for Parallelization

Parasol

The Question: Are there cross iteration dependences?
« Equivalent to determining if system of equations has integer solutions
* In general, undecidable — until symbols become numbers (at runtime)

Linear Reference Patterns

- Solutions restricted to linear addressing and control
(mostly small kernels)

o Geometric view: Polytope model
Some convex body contains no integral points

o Existential solutions: GCD Test, Banerjee Test, etc
Potentially overly conservative

O General solution: Presburger formula decidability
Omega Test: Precise, potentially slow

Nonlinear Reference Patterns

. Common cases: indirect access, recurrence without
closed form

* Approaches: Linear Approximation, Symbolic
Analysis, Interactive

//bo 3 =1, 10
IF (x(j)>0) THEN
A(f(])) =
ENDIF
ENDDO

1</ <10
1<, <10
JwZE T,
J,=J.+40

Run-time Dependence Analysis:
Speculative Parallelization

20N\
Parasol v
Checkpoint
Problem: |FOR 1 = . _ _
A[w[i]] = A[R[i]] + C[1i]
Speculative parallel
execution + tracing
Main Idea:
- Speculatively execute the loop in parallel Analysis

and record reference in private shadow data

Yes
structures @

o Afterwards, check shadow data structures No

for data dependences 9
estore
 if no dependences loop was parallel |
* else re-execute safely (loop not parallel) Sequential
execution

Cost:
End
« Worst case: proportional to data size " 9

Hybrid Analysis

Compile-time Analysis Hybrid Analysis Run-time Analysis

Symbolic analysis

Extract conditions

O = Full reference-by-
<§,: g reference analysis
Z ¢
> 5
0O < PROs PROs PROs
No run-time overhead Always finds answers Always finds answers
Minimizes runtime overhead
CONs CONs CONs
Conservative when More Complex static analysis Run-time overhead
Input/computed values Ignores compile-time
Indirection, Control analysis
Weak symbolic analysis
Complex recurrences 10

Impractical Combinatorial explosion

Hybrid Analysis

Compile-time Phase

DO j=1,N
a(j)=a(j+40)
ENDDO

Under what conditions can
the loop be executed in
parallel?

1. Collect and classify memory
references.

41 :40+N

2. Aggregate them symbolically

READ

3. Formulate independence test.

41 :40+N

1:N

READ

WRITE

4.a) If we can prove 1< N <40 4.b) If N is unknown,

Declare loop parallel.

Extract run-time test.

Hybrid Analysis DO j=1,N
a(j)=a(j+40)

Run-time Phase

ENDDO

“Parasol

4.a) If we can prove 1<N <40,
Declare loop parallel.

Compile Time

Execute the loop in parallel if
possible.

Run Time

Parallel DO PARALLEL j=1,N

No run-time tests
performed if not necessary!

4.b) If N is unknown,

Parallel
Loop

Sequential
Loop

Extract run-time test.

Run-time Test

///;F (N <40) THEN

DO PARALLEL j=1,N
a(j)=a(j+40)

ENDDO

ELSE

DO j=1,N
a(j)=a(j+40)
ENDDO

ENDIF

Hybrid Analysis:

Parasol

WRITE \\If' (x>0) THEN

Program Level
Representation
of References
(USR)

P slightly deeper dive

DO j =1, n

—A(J) = A(J+40) —

A(j) = A(3) + A(j+20)
ENDIF
ENDDO

READ N WRITE = Empty?

‘Jl" Empty?

————— READ

:n | WRITE

41:40+n

21:20+n x>0

13

Set expression to ™. Mo
. - IF (x>0) THEN
Logic expression _AG) = AG) + AGHD

“Parasol ENDDO

Empty?

READ l:n

1. Distribute

Intersection

41:40+n 41:40+n

21:20+n x>0 21:20+n x>0

(n <20 or x< 0)

and n < 40

Representation is Key ! 21:20+n 1:n

“Parasol

Hybrid Analysis Strategy

Independence conditions factored into a series of sufficient
conditions tested at runtime in the order of their complexity

previous O(1) Scalar
example OperaW pass
aggregate fail
Comparisons pass
references
reference
based
LRPD pass

fail |

Hybrid Analysis Parallelization Coverage

BRT: Individual Refs ORT: Aggregated Refs ORT: Simple Checks B Compile-time
100 —

80 -

60 - IH
40 - I

20 A

PERFECT SPEC2000/06 Previous SPEC

« Parallelized 380 loops of 2100 analyzed loops: 92% seq. coverage

“Parasol

40

Speedups: Hybrid Analysis vs. Intel ifort

Intel vs. Hybrid Analysis on 4 cores

Intel vs. Hybrid Analysis on 8 processors

6
35 m Hybrid Analysis m Intel 5 M Hybrid Analysis m Intel
3.0
o S 4
5 25 T3
© 20 o
7} 2
: I| b
ot JHE e |I|II||II|||I|| o AN_EE e
o : : & ® & v\g e & &
N ¥
@ qp SELF NS Qs S @D LS ,\q& & V<z RS c,\$ RGPS S PPN
& @b RCRINE '$’ & WO o O) A S J O
6 & o N é‘ » Q\@ &) I N 5
& ‘(‘* 9 \(\Ib $\’ C
&
Benchmark 050 v\S-'
NS C
@,
Benchmark

Older Benchmarks with smaller datasets on 4 cores only
» Better performance on 14/18 benchmarks on 4 cores
Better performance on 10/11 benchmarks on 8 cores

19

So....

“Parasol

- What did we accomplish”?

« Full Parallelization of C-tran codes (28 benchmarks at
>90% coverage)

A IR representation & a technique

- We cannot declare victory because:

* Required Heroic Efforts
« Commercial compilers adopt slowly
 Compilers cannot create parallelism

-- only programmers can! amcsd

How else?

“Parasol

First

* Think Parallel!

Then

« Develop parallel algorithms

« Raise the level of abstraction

« Use algorithm level (not only) abstraction
9

» Expressivity + Productivity

« Optimization can be compiler generated

21

STAPL: standard Template Adaptive Parallel Library

“Parasol

A library of parallel components that adopts the generic programming
philosophy of the C++ Standard Template Library (STL).

« STL « STAPL
— Iterators provide abstract access - Views provide abstracted access to
to data stored in Containers. distributed data stored in Distributed
Containers.
— Algorithms are sequences of
instructions that transform the data. — Parallel Algorithms specified by
Skeletons

O Run-time representation is Task Graph

Containers Views Algorithms

Task Graphs

Containers lterators Algorithms

23

STAPL Components
“Parasol
High Level of Abstraction ~ similar to C++ STL

User Application Code
Task & Data parallelism: Asynchronous

. - Views
« Parallelism (SPMD) implicit — Serialization Algorithms
licit Containers
explici l

* imperative + functional: Data flow+Containers x Skeleton
g Framework
()

: £

SPMD Programs defined by S ! :
L Task Graph

» Data Dependence Patterns =» Skeletons =
§_ A \ 4
<

« Composition: parallel, serial, nested, ... ——
» Tasks: Work function & Data S——
* Fine grain tasks (coarsened) Library

1 e deibdedconaners o
MPI, OpenMP, Pthreads

Execution Defined by:
Data Flow Graphs (Task Graphs)
Execution policies: scheduling, asynchrony..
Distributed Memory Model (PGAS)

Scheduler Performance Monitor

24

The STAPL Graph Library (SGL)

Parasol

 Many problems are modeled using graphs:
- Web search, data-mining (Google, Youtube)
- Social networks (Facebook, Google+, Twitter)
- Geospatial graphs (Maps)
- Scientific applications

* Many important graph algorithms:

- Breadth-first search, single-source shortest path, strongly
connected components, k-core decomposition, centralities

= Kn(;?/ledge :raph =

o 27

e

SGL Programming Model

“Parasol

User code Vertex Operator Neighbor Operator

Graph Runtime

Library code

KLA Hierarchical Out-of-Core

- =

STAPL Runtime System
OpenMP | MPI C++11 threads

32

Parallel Graph Algorithms May Use

Parasol

o Level-Synchronous Model . Asynchronous Model

- BSP-style iterative computation _ Asynchronous task execution

N - Point-to-point synchronizations, possible
- Global synchronization after each redundant work

level, no redundant work

Processors Processors

Computation
Tasks

Local . Interleaved

Computation Communication

Communication }%

Barrier

I

Synchronization

35

Having Your Cake and Eating it Too

0N\
Parasol Level-Sync
\[== Synchronization Cost
b == Redundant Work Cost
Total Cost
o : levels
Optimal Asynchrony Asynchrony SUpersteps

Cost

> Async

—— Asynchrony

k-Level Asynchronous Model
* k defines depth of superstep (KLA-SS)

* Unifies existing models
- k=1: Level-synchronous
- k=d: Asynchronous

36

k-Level Asynchronous (KLA) BFS

KLA vs. Level-Sync BFS on Synthetic RoadNetwork
9.63 Billion Vertices, 10.2 Billion Edges on Cray XE6

“Parasol

700 + KLA
Level-Synchronous
505 - High Asynchrony
[72]
°
c
Q
Qo
@ 350 1
[}
E Diameter = 3218
= 475 k=9
KLA-SS = 358
0
2048 4096 8192 16k 32k 64k 96k

Processors

» Other strategies stop scaling after 32,768 cores
« KLA strategy faster, scales better

* Adaptively change asynchrony to balance

global-synchronization costs and asynchronous penalty
37

PDT:
Application Development with STAPL

« Compute flow of subatomic particles across a spatial domain
* Discretized spatial domain represented using pGraph

* lterative algorithm (e.g., GMRES) iterates until particle flow in
space, direction, and energy level stabilizes.

- Matrix-vector multiplication is 90% of execution time and is
implemented as sweep of spatial domain in all directions.

- Each sweep is a task graph

41

One sweep Eight simultaneous sweeps

Particle Transport in STAPL

Parasol

‘5 Parallel Efficiency vs. Core Count, IBM BG/Q (mira)

= Experiment keeps
—=— \odel number of unknowns

i per processor constant.

PARAGRAPH size and
communication
increases with
processor count.

08F

Efficiency
[
o

Model assumes
immediate processing of
messages

0.4

02f

1 1 1 1 1
g 64K 256K 912K 768K 1.9M
Cores

42

Conclusions:
What did we accomplish? What did we learn?

« Auto - parallelization: Major Effort

— 28 benchmarks parallelized with good coverage
- Possible but very hard

— Autopar: Extracts but does not create parallelism
- Technology can be (re)used in other areas (TF compilation)

« STAPL for new parallel programs (e.g., TF)

- New(ish) asynchronous algorithms (Data Flow, ..)
— Distributed environment (containers, Data Flow Graph)
- Adaptive environment & polymorphism

Avenues are complementary

« Legacy Code: Parallelization may be a good idea
« Always: Think Parallel & Write Clean Code

STAPL on https://qitlab.com/parasol-lab/stapl
. 43
and several National Labs repos

https://gitlab.com/parasol-lab/stapl

Parasol

Why is this relevant ?

From obsolescence to point technology — just wait 10 years

Static & Dynamic Array reference analysis — Basis for ML
optimizing transformations — Tensors ~ n-dim arrays

STAPL design facilitates: Compose and Conguer

- Programs = Skeleton Composition
— Global properties = Component Property Composition
O Correctness, performance models, approximation, fault tolerance, energy

Compile the composition (fuse TF components)

Questions?

46

