
Two Roads to Parallelism:
Compilers and Libraries

Lawrence Rauchwerger

Parallel Computing

• It’s back (again) and ubiquitous
• We have the hardware (multicore ….

petascale)
• Parallel software + Productivity: not yet…
• And now ML needs it …

Our Road towards a productive parallel software
development environment

2

For Existing Serial Programs

Previous Approaches
- Use Instruction Level Parallelism (ILP): HW + SW

¡ compiler (automatic) BUT not scalable
- Thread (Loop) Level (Data) Parallelism: HW+SW

¡ compiler (automatic) BUT insufficient coverage

¡ manual annotations more scalable but labor intensive

Our Approach
- Hybrid Analysis: A seamless bridge of static and dynamic

program analysis for loop level parallelization

¡ USR - a powerful IR for irregular application

¡ Speculation as needed for dynamic analysis 3

For New Programs

Previous Approaches
- Write parallel programs from scratch
- Use parallel language, library, annotations
- Hard Work !

Our Approach
- STAPL: Parallel Programming Environment

¡ Library of parallel algorithms, distributed containers,
patterns and run-time system

¡ Used in PDT, an important app for DOE & Nuclear
Engineers, influenced Intel’s TBB

¡ …and perhaps similar to Tensorflow
4

Parallelizing Compilers

Auto-Parallelization of Sequential Programs
- Around for 30+ years: UIUC, Rice, Stanford, KAI, etc.
- Requires complex static analysis + other technology
- Not widely adopted

Our Approach
- Initially: speculative parallelization
- Better: Hybrid Analysis is best of both: static + dynamic
- Aspects of these techniques used in mainstream

compilers and STM based systems.
- Excellent results – Major Effort – Don’t try at home

6

7

Static Data Dependence Analysis:

An Essential Tool for Parallelization

Linear Reference Patterns

- Solutions restricted to linear addressing and control

(mostly small kernels)

¡ Geometric view: Polytope model

• Some convex body contains no integral points

¡ Existential solutions: GCD Test, Banerjee Test, etc

• Potentially overly conservative

¡ General solution: Presburger formula decidability

• Omega Test: Precise, potentially slow

DO j = 1, 10
a(j) = a(j+40)
ENDDO

1≤ jw ≤10
1≤ jr ≤10
jw ≠ jr

jw = jr + 40

The Question: Are there cross iteration dependences?

• Equivalent to determining if system of equations has integer solutions

• In general, undecidable – until symbols become numbers (at runtime)

Nonlinear Reference Patterns

• Common cases: indirect access, recurrence without

closed form

• Approaches: Linear Approximation, Symbolic

Analysis, Interactive

DO j = 1, 10
IF (x(j)>0) THEN
A(f(j)) = …

ENDIF
ENDDO

Run-time Dependence Analysis:
Speculative Parallelization

Main Idea:
• Speculatively execute the loop in parallel

and record reference in private shadow data
structures

• Afterwards, check shadow data structures
for data dependences
• if no dependences loop was parallel
• else re-execute safely (loop not parallel)

Cost:
• Worst case: proportional to data size

Speculative parallel
execution + tracing

Success ?

Analysis

Checkpoint

Restore

Sequential
execution

Yes

No

End

FOR i = …
A[W[i]] = A[R[i]] + C[i]

Problem:

9

10

Hybrid Analysis
D

Y
N

A
M

IC

(r
un

-ti
m

e)
S

TA
TI

C
(c

om
pi

le
r)

Symbolic analysis

Compile-time Analysis

Symbolic analysis

Extract conditions

Evaluate conditions

Hybrid Analysis

Full reference-by-
reference analysis

Run-time Analysis

PROs
No run-time overhead

CONs
Conservative when

Input/computed values
Indirection, Control

Weak symbolic analysis
Complex recurrences

Impractical Combinatorial explosion

PROs
Always finds answers

CONs
Run-time overhead
Ignores compile-time

analysis

PROs
Always finds answers
Minimizes runtime overhead
CONs
More Complex static analysis

11

DO j=1,N
a(j)=a(j+40)
ENDDO

Under what conditions can
the loop be executed in
parallel?

READ WRITE

x x

j+40 j=1,N j=1,Nj
1. Collect and classify memory
references.

N 40
4.b) If N is unknown,
Extract run-time test.

41:40+N

READ WRITE
1:N 2. Aggregate them symbolically

3. Formulate independence test.
41:40+N
READ WRITE

1:N

Empty?

Hybrid Analysis
Compile-time Phase

4.a) If we can prove 1 N 40
Declare loop parallel.

∩

≤ ≤
≤

12

Parallel
Loop

DO j=1,N
a(j)=a(j+40)
ENDDO

Execute the loop in parallel if
possible.

Hybrid Analysis
Run-time Phase

4.a) If we can prove 1 N 40,
Declare loop parallel.

Compile Time
Run Time

No run-time tests
performed if not necessary!

DO PARALLEL j=1,N
a(j)=a(j+40)
ENDDO

≤
N 40

4.b) If N is unknown,
Extract run-time test.

Parallel
Loop

Sequential
Loop

IF (N 40) THEN
DO PARALLEL j=1,N
a(j)=a(j+40)
ENDDO
ELSE
DO j=1,N
a(j)=a(j+40)
ENDDO
ENDIF

Run-time Test

≤

≤

≤

DO j = 1, n
A(j) = A(j+40)
IF (x>0) THEN
A(j) = A(j) + A(j+20)

ENDIF
ENDDO

13

Hybrid Analysis:
a slightly deeper dive

WRITE READ

READ WRITE = Empty?

READ WRITE

∩

#

21:20+n x>0

41:40+n

1:n

Empty?

∩

∪Program Level
Representation
of References
(USR)

14

Set expression to
Logic expression

21:20+n x>0

41:40+n#

Empty?

1:n

1. Distribute
Intersection

21:20+n x>0

1:n# 1:n41:40+n

Empty? Empty?

∩

∪ ∩ ∩

∧

x 0

n 40

n 20

3

∧

∨

≤ ≤

≤

21:20+n 1:n

x 0
Empty?

n 40

2

∧

∨

∩ ≤

≤(n 20 or x 0)
and n 40

4≤ ≤
≤

DO j = 1, n
A(j) = A(j+40)
IF (x>0) THEN
A(j) = A(j) + A(j+20)

ENDIF
ENDDO

WRITE

READ

Representation is Key !

Independence conditions factored into a series of sufficient
conditions tested at runtime in the order of their complexity

Hybrid Analysis Strategy

15

O(1) Scalar
Operations

O(n/k)
Comparisons

reference
based

previous
example

LRPD

aggregate
references

Execute in Parallel
(independent)

Execute Sequentially
(dependent)

pass

pass

pass
fail

fail

fail

17

Hybrid Analysis Parallelization Coverage

0

20

40

60

80

100

ad
m

arc
2d

bd
na

dy
fes

m

flo
52

mdg

oc
ea

n

sp
ec

77

tra
ck

trfd

ap
plu

ap

si

mgri
d

sw
im

wup
wise

hy
dro

2d

matr
ix3

00

mdlj
dp

2

na
sa

7

ora

sw
m25

6

tom
ca

tv

RT: Individual Refs RT: Aggregated Refs RT: Simple Checks Compile-time

PERFECT SPEC2000/06 Previous SPEC

• Parallelized 380 loops of 2100 analyzed loops: 92% seq. coverage

Speedups: Hybrid Analysis vs. Intel ifort

• Older Benchmarks with smaller datasets on 4 cores only
• Better performance on 14/18 benchmarks on 4 cores
• Better performance on 10/11 benchmarks on 8 cores

19

So….

- What did we accomplish?
• Full Parallelization of C-tran codes (28 benchmarks at

>90% coverage)

• A IR representation & a technique

- We cannot declare victory because:
• Required Heroic Efforts

• Commercial compilers adopt slowly

• Compilers cannot create parallelism
-- only programmers can!

20

How else?

First

• Think Parallel!

Then

• Develop parallel algorithms

• Raise the level of abstraction
• Use algorithm level (not only) abstraction

• Expressivity + Productivity

• Optimization can be compiler generated
21

STAPL: Standard Template Adaptive Parallel Library

• STL
- Iterators provide abstract access

to data stored in Containers.

- Algorithms are sequences of
instructions that transform the data.

• STAPL
- Views provide abstracted access to

distributed data stored in Distributed
Containers.

- Parallel Algorithms specified by
Skeletons
¡ Run-time representation is Task Graph

A library of parallel components that adopts the generic programming
philosophy of the C++ Standard Template Library (STL).

23

AlgorithmsContainers Iterators AlgorithmsContainers

Task Graphs

Views

STAPL Components

24

User Application Code

Ad
ap

tiv
e

Fr
am

ew
or

k

Algorithms Views
Containers

Skeleton
Framework

Task Graph

Run-time System
ARMI Communication

Library Scheduler Performance Monitor

MPI, OpenMP, Pthreads

High Level of Abstraction ~ similar to C++ STL
Task & Data parallelism: Asynchronous
• Parallelism (SPMD) implicit – Serialization

explicit
• imperative + functional: Data flow+Containers

SPMD Programs defined by
• Data Dependence Patterns è Skeletons

• Composition: parallel, serial, nested, …
• Tasks: Work function & Data

• Fine grain tasks (coarsened)
• Data in distributed containers

Execution Defined by:
Data Flow Graphs (Task Graphs)
Execution policies: scheduling, asynchrony..
Distributed Memory Model (PGAS) 24

The STAPL Graph Library (SGL)

• Many problems are modeled using graphs:
- Web search, data-mining (Google, Youtube)
- Social networks (Facebook, Google+, Twitter)
- Geospatial graphs (Maps)
- Scientific applications

• Many important graph algorithms:
- Breadth-first search, single-source shortest path, strongly

connected components, k-core decomposition, centralities

27

SGL Programming Model

Vertex Operator Neighbor Operator

Graph Runtime

KLA Hierarchical Out-of-Core

User code

Library code

STAPL Runtime System

OpenMP MPI C++11 threads 32

Parallel Graph Algorithms May Use

• Asynchronous Model
- Asynchronous task execution

- Point-to-point synchronizations, possible
redundant work

• Level-Synchronous Model
- BSP-style iterative computation

- Global synchronization after each
level, no redundant work

Processors

Local
Computation

Communication

Barrier
Synchronization

Interleaved
Communication

Computation
Tasks

Processors

35

Having Your Cake and Eating it Too

k-Level Asynchronous Model

• k defines depth of superstep (KLA-SS)
• Unifies existing models

- k=1: Level-synchronous

- k=d: Asynchronous

1 4 16 64 256
—— Asynchrony ——>

—
—

C
os

t
—

—
>

Optimal Asynchrony

Level-Sync

Async

Redundant Work Cost
Synchronization Cost

Total Cost
levels

superstepsAsynchrony =

36

k-Level Asynchronous (KLA) BFS

• Other strategies stop scaling after 32,768 cores

• KLA strategy faster, scales better
• Adaptively change asynchrony to balance

global-synchronization costs and asynchronous penalty

k = 9
KLA-SS = 358

Diameter = 3218

37

PDT:
Application Development with STAPL

• Compute flow of subatomic particles across a spatial domain
• Discretized spatial domain represented using pGraph
• Iterative algorithm (e.g., GMRES) iterates until particle flow in

space, direction, and energy level stabilizes.
- Matrix-vector multiplication is 90% of execution time and is

implemented as sweep of spatial domain in all directions.
- Each sweep is a task graph

One sweep Eight simultaneous sweeps
41

Particle Transport in STAPL

Experiment keeps
number of unknowns
per processor constant.

PARAGRAPH size and
communication
increases with
processor count.

Model assumes
immediate processing of
messages

42

Conclusions:
What did we accomplish? What did we learn?

• Auto - parallelization: Major Effort
- 28 benchmarks parallelized with good coverage
- Possible but very hard
- Autopar: Extracts but does not create parallelism
- Technology can be (re)used in other areas (TF compilation)

• STAPL for new parallel programs (e.g., TF)
- New(ish) asynchronous algorithms (Data Flow, ..)
- Distributed environment (containers, Data Flow Graph)
- Adaptive environment & polymorphism

Avenues are complementary
• Legacy Code: Parallelization may be a good idea
• Always: Think Parallel & Write Clean Code

STAPL on https://gitlab.com/parasol-lab/stapl
and several National Labs repos 43

https://gitlab.com/parasol-lab/stapl

Why is this relevant ?

• From obsolescence to point technology – just wait 10 years

• Static & Dynamic Array reference analysis – Basis for ML
optimizing transformations – Tensors ~ n-dim arrays

• STAPL design facilitates: Compose and Conquer
- Programs = Skeleton Composition

- Global properties = Component Property Composition

¡ Correctness, performance models, approximation, fault tolerance, energy

• Compile the composition (fuse TF components)

Questions?

46

