
Kilo Instruction
Processors

Adrián Cristal

2/7/2019 YALE 80

Processor-DRAM Gap (latency)
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

a
n

c
e

Time

“Moore’s Law”

D.A. Patterson “ New directions in Computer Architecture” Berkeley, June 1998

Integer, 8-way, L2 1MB

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

128 512 1024 4096 128 512 1024 4096

perceptron perfect

ROB Size / Branch Predictor

IP
C

100
500
1000

Memory
Latency

Perfect Mem. & Perfect BP

Perfect Mem. & Perceptron BP

0.6X

1.22X

1.41X

Research Proposal to Intel (July 2001) and presentation to Intel-MRL March 2002
Cristal et al.: “Large Virtual ROBs by Processor Checkpointing”, TR UPC-DAC, July 2002
M. Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003

Floating-point, 8-way, L2 1MB

0,0

1,0

2,0

3,0

4,0

5,0

6,0

128 512 1024 4096 8192 128 512 1024 4096 8192

perceptron perfect

ROB Size / Branch Predictor

IP
C

100
500
1000

Memory
Latency

Perfect Mem. & Perfect BP

Perfect Mem. & Perceptron BP

0.45X

2.34X

3.91X

Research Proposal to Intel (July 2001) and presentation to Intel-MRL March 2002
Cristal et al.: “Large Virtual ROBs by Processor Checkpointing”, TR UPC-DAC, July 2002
M. Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003

Execution Locality
void smvp(int nodes, double ***A, int *Acol,

int *Aindex, double **v, double **w) {
[...]
sum0 = A[Anext][0][0]*v[i][0] + A[Anext][0][1]*v[i][1] + A[Anext][0][2]*v[i][2];
[...]

}

22.2%

Cache-Dependent
Code

Miss-Dependent
Instruction Clusters

Mapping Clusters to Processors

• An execution cluster is a partition of the dynamic DDG
belonging to the same locality group.

 High Locality Clusters:
 large amount of instructions (70%) SpecFP, even more SpecINT
 need to tolerate L2 cache hit latencies
 advance as fast as possible (prefetching effect!)
 thus the Cache Processor can be small, but must be Out-of-Order

 Low Locality Clusters:
 small amount of instructions (<30%)
 generally not in critical path (Karkhanis, WMPI'02)

 thus the Memory Processor can be even smaller, and probably In-Order

oo3

Slide 6

oo3 again LLC instead of L2?
osman.s.unsal osman.s.unsal, 7/2/2019

 Processes only Cache Hit/Register dependent Insts
 Latency Critical
 Buffer few instructions (<100)
 Speculative / Out-of-Order
 Executes most of control code
 LD/ST intensive
 Memory Lookahead (Prefetching)

58%

15% 6%
20%

A different view: D-KIP

About 70% High Locality

About 30% Low Locality

Cache
Processor

Memory
Processor

F
E

T
C

H miss-dependent insts

DECOUPLED KILO-INSTRUCTION PROCESSOR (HPCA'06,
PACT'07)

400 cycles
main memory
access latency

Distribution of Instructions based on Decode->Issue
Latency

KILO-Instruction
processor

model
2MB L2 Cache

measured in
groups of
30 cycles

SPEC FP 2000 Miss-dependent Instructions
 Latency Tolerant
 Buffer thousands of instructions
 Relaxed Scheduling
 Little Control Code -> Few Recoveries
 Few address calculations
 No caches, No fetch/decode logic

Miquel Pericas et al, “A decoupled KILO-instruction processor”, HPCA06

Flexible Heterogeneous MultiCore (I)

Cache Processor Memory Processor

Instruction Window

Miss-Dependent Code
Cache-

Dependent Code

youngest oldest

small out-of-order core
designed assuming perfect
L2. It processes all cache-
dependent code

small dual-issue in-order processors executing code depending
on L2 cache misses. Each memory engine processes a portion of
the instruction window. Inclusion of all loads/stores provides sequential
memory semantics. Activation and de-activation of memory engines
changes the window size and allows to control power consumption

Memory
Engines

ROB

Miquel Pericas et al, “A Flexible Heterogeneous Multi-Core Architecture”, PACT07

Flexible Heterogeneous MultiCore (II)

Extension to MultiThreading

Pool of Memory Engines can be shared for
higher throughput/fairness

Dynamically Assigned Pool of MEs
Cache Processors

ROB

ROB

ROB

Kilo, Runahead and Prefetching

• Prefetching
• Anticipates memory requests
• Reduces the impact of misses in the memory hierarchy

• Runahead Mechanism
• Executes speculative instructions under a LLC miss
• Prevents the processor from stall when the ROB is full
• Allows generating useful data prefetch

• Kilo-instruction Processors
• Exploits more ILP by maintaining thousands of in-flight instructions

while long-latency loads are outstanding in memory (implicit
prefetching)

Tanausú Ramírez et al., “Kilo-instruction Processors, Runahead and Prefetching”, CF’06, May, 2006.

Performance versus RunAhead and Stride
Prefetching

•OoO and RunAhead are 4-way with 64/256-entry ROBs
•Cache Processors are 4-way with 64-entry ROB
•Memory Processor/Memory Engines are two-way in-order processors
•A Memory Engine can hold up to 128 long-latency instructions and 128 loads/stores
•RunAhead features ideal runahead cache
•Stream prefetcher can hold up to 64KB of prefetched data

“Kilo-processor” and multiprocessor
systems

0

0,5

1

1,5

2

2,5

3

3,5

64 128 512 1024 2048 64 128 512 1024 2048 64 128 512 1024 2048

FFT RADIX LU

ROB Size / Benchmark

IP
C

IDEAL NET

BADA

IDEAL NET & MEM

M. Galluzzi et al. “ A First glance at Kiloinstruction Based Multiprocessors” Invited Paper. ACM Computing Frontiers
Conference. Ischia, Italy, April 10-12, 2004

What we wanted to do

• Can we extend a Big-Little multicore to implement
the FMC?

• Are the Memory Engines (Mes) used all the time or
are they waiting for long latency loads?

• Can we do something to avoid discarding all the MEs
in case of branch mispredictions?

• How does a practical kilo-vector processor look like?

Some ideas “stolen” from “Edge Processors” and
“Decoupled Architectures”

Pool of MEsCache Processors Pool of
Waiting Queues

…
Split the functionality of the MEs, the
instruction queues and the functional
units

Waiting Queue

• Instructions + Logical Registers
• Wait until all used logical registers are ready
• Assign a Memory Engine

Input
Register
File

Inst Inst Inst … Inst
Waiting

Waiting

Memory Engine

Where to start a waiting queue

• Loop:
• …
• …
• If: Br …
• …
• …
• Else: …
• …
• …
• Fi:
• …
• Endloop

Loop:

Loop:

Loop:

Loop:

Loop:

Loop:

Loop:

Loop:

If

Where to start a waiting queue

• Loop:
• …
• …
• If: Br …
• …
• …
• Else: …
• …
• …
• Fi:
• …
• Endloop

Loop:

Loop:

Loop:

Loop:

Loop:

Loop:

Loop:

Loop:

IfElse
R1<-

Loop:

Loop:

Else
R1<-

Where to start a waiting queue

• Loop:
• …
• …
• If: Br …
• …
• …
• Else: …
• …
• …
• Fi:
• …
• Endloop

Loop:

Loop:

Loop:

Loop:

Loop:

Loop:

New R1, R2

New R1

Problems and more problems

• What to do if the addresses of Loads and
Stores are modified

• Fetching instructions, and partial reexecution

• Pointer Chasing
• Start a new waiting queue or suspend the execution of a waiting queue?

“Kilo-vector” processor

20 80
Program:

20 8
Program:

5
Program:

8

Kilo

Vector

Speedup: 3.5

Speedup: 7.7

F. Quintana et al, “Kilo-vector” processors, UPC-DAC

Adrian.cristal@bsc.es

