
Kilo Instruction
Processors

Adrián Cristal

2/7/2019 YALE 80



Processor-DRAM Gap (latency)
µProc
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“Moore’s Law”

D.A. Patterson “ New directions in Computer Architecture” Berkeley, June 1998



Integer, 8-way, L2 1MB
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Floating-point, 8-way, L2 1MB
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Execution Locality
void smvp(int nodes, double ***A, int *Acol,

int *Aindex, double **v, double **w) {
[...]   
sum0 = A[Anext][0][0]*v[i][0] + A[Anext][0][1]*v[i][1] + A[Anext][0][2]*v[i][2];
[...]  

}

22.2%

Cache-Dependent
Code

Miss-Dependent
Instruction Clusters



Mapping Clusters to Processors

• An execution cluster is a partition of the dynamic DDG 
belonging to the same locality group.

 High Locality Clusters: 
 large amount of instructions (70%) SpecFP, even more SpecINT
 need to tolerate L2 cache hit latencies
 advance as fast as possible (prefetching effect!)
 thus the Cache Processor can be small, but must be Out-of-Order

 Low Locality Clusters:
 small amount of instructions (<30%) 
 generally not in critical path (Karkhanis, WMPI'02)

 thus the Memory Processor can be even smaller, and probably In-Order

oo3



Slide 6

oo3 again LLC instead of L2?
osman.s.unsal osman.s.unsal, 7/2/2019



 Processes only Cache Hit/Register dependent Insts
 Latency Critical
 Buffer few instructions (<100)
 Speculative / Out-of-Order 
 Executes most of control code
 LD/ST intensive
 Memory Lookahead (Prefetching)
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model
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SPEC FP 2000 Miss-dependent Instructions 
 Latency Tolerant
 Buffer thousands of instructions
 Relaxed Scheduling
 Little Control Code -> Few Recoveries
 Few address calculations
 No caches, No fetch/decode logic

Miquel Pericas et al, “A decoupled KILO-instruction processor”, HPCA06



Flexible Heterogeneous MultiCore (I)

Cache Processor Memory Processor

Instruction Window

Miss-Dependent Code
Cache-

Dependent Code

youngest oldest

small out-of-order core
designed assuming perfect 
L2. It processes all cache-
dependent code

small dual-issue in-order processors executing code depending 
on L2 cache misses. Each memory engine processes a portion of
the instruction window. Inclusion of all loads/stores provides sequential
memory semantics. Activation and de-activation of memory engines
changes the window size and allows to control power consumption

Memory
Engines

ROB

Miquel Pericas et al, “A Flexible Heterogeneous Multi-Core Architecture”, PACT07



Flexible Heterogeneous MultiCore (II)

Extension to MultiThreading

Pool of Memory Engines can be shared for 
higher throughput/fairness

Dynamically Assigned Pool of MEs
Cache Processors

ROB

ROB

ROB



Kilo, Runahead and Prefetching

• Prefetching 
• Anticipates memory requests
• Reduces the impact of misses in the memory hierarchy

• Runahead Mechanism
• Executes speculative instructions under a LLC miss
• Prevents the processor  from stall when the ROB is full
• Allows generating useful data prefetch

• Kilo-instruction Processors
• Exploits more ILP by maintaining thousands of in-flight instructions 

while long-latency loads are outstanding in memory (implicit 
prefetching)

Tanausú Ramírez et al., “Kilo-instruction Processors, Runahead and Prefetching”, CF’06, May, 2006.



Performance versus RunAhead and Stride 
Prefetching

•OoO and RunAhead are 4-way with 64/256-entry ROBs
•Cache Processors are 4-way with 64-entry ROB
•Memory Processor/Memory Engines are two-way in-order processors
•A Memory Engine can hold up to 128 long-latency instructions and 128 loads/stores
•RunAhead features ideal runahead cache
•Stream prefetcher can hold up to 64KB of prefetched data



“Kilo-processor” and multiprocessor 
systems
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What we wanted to do

• Can we extend a Big-Little multicore to implement 
the FMC?

• Are the Memory Engines (Mes) used all the time or 
are they waiting for long latency loads?

• Can we do something to avoid discarding all the MEs 
in case of branch mispredictions?

• How does a practical kilo-vector processor look like?



Some ideas “stolen” from “Edge Processors” and 
“Decoupled Architectures”

Pool of MEsCache Processors Pool of
Waiting Queues

…
Split the functionality of the MEs, the 
instruction queues and the functional 
units



Waiting Queue

• Instructions + Logical Registers
• Wait until all used logical registers are ready
• Assign a Memory Engine

Input
Register
File

Inst Inst Inst … Inst
Waiting

Waiting

Memory Engine



Where to start a waiting queue

• Loop:
• …
• …
• If: Br …
• …
• …
• Else: …
• …
• …
• Fi:
• …
• Endloop

Loop:
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Loop:

Loop:
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Where to start a waiting queue
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Loop:

Loop:

Else
R1<-

Where to start a waiting queue

• Loop:
• …
• …
• If: Br …
• …
• …
• Else: …
• …
• …
• Fi:
• …
• Endloop

Loop:
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Problems and more problems

• What to do if the addresses of Loads and 
Stores are modified

• Fetching instructions, and partial reexecution

• Pointer Chasing
• Start a new waiting queue or suspend the execution of a waiting queue?



“Kilo-vector” processor
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F. Quintana et al, “Kilo-vector” processors, UPC-DAC
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