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  Abstract 
 Two approaches to high throughput processors are 
Chip Multi-Processing (CMP) and Simultaneous Multi-
Threading (SMT).  CMP increases layout efficiency, 
which allows more functional units and a faster clock 
rate.  However, CMP suffers from hardware partitioning 
of functional resources.  SMT increases functional unit 
utilization by issuing instructions simultaneously from 
multiple threads.  However, a wide-issue SMT suffers 
from layout and technology implementation problems.   
 We use silicon resources as our basis for comparison 
and find that area and system clock have a large effect 
on the optimal SMT/CMP design trade.  We show the 
area overhead of SMT on each processor and how it 
scales with the width of the processor pipeline and the 
number of SMT threads.  
  The wide issue SMT delivers the highest single-
thread performance with improved multi-thread 
throughput.  However multiple smaller cores deliver the 
highest throughput.  
 

 
1. Introduction 
 
 Recent advances in VLSI have created challenges to 
continuing the current processor evolutionary trend.  The 
smaller minimum technology spacing allows more system 
integration.  However, most programs lack the instruction 
level parallelism to take advantage of the increased 
number of functional units.  In addition, modern 
processors have deeper pipelines and larger relative 
latencies for memory accesses and routing delays.   Two 
techniques to solve some of these problems are Chip 
Multi-Processing (CMP) and Simultaneous Multi-
Threading (SMT). 
 SMT issues instructions to functional units 
simultaneously from multiple threads.   This creates 

 
 
horizontal and vertical sharing which increases 
throughput through thread-level parallelism and tolerates 
processor and memory latencies to increase processor 
efficiency.  The problem with a large SMT is that layout 
blocks and circuit delays grow faster than linear with 
issue width.  In addition, multiple threads share the same 
level-1 cache, TLB, and branch predictor units, which 
causes contention.  The resulting increase in cache misses 
and branch mispredict rates limits performance.   
 On the other hand, CMP increases layout efficiency, 
resulting in more functional units within the same silicon 
area plus faster clock rates [9].  The problem with CMP 
is that the hardware partition of on-chip processors 
restricts performance.  The hardware partition results in 
smaller resources since the level-1 caches, TLBs, branch 
predictors, and functional units are divided among the 
multiple processors.  Hence single-threaded programs 
cannot use resources from the other processor cores, and 
the smaller level-1 resources per core causes increased 
miss rates. 
 Consequently, we design the Parallel On-chip 
Simultaneous Multithreaded processor (POSM), which is 
an efficient combination of CMP and SMT.  Hence, it 
still has the CMP advantages of more functional units 
and a faster clock than a wide-issue processor.  The 
addition of SMT increases the efficiency of the 
underlying CMP. However, a wide-issue SMT has a 
microarchitectural advantage because there is no 
hardware partition between processor resources.    
 Figure 1 shows an example of the different types of 
processors: superscalar, SMT, CMP, and POSM.   Each 
box represents a potential issue to a functional unit.  
Processors with a faster clock have more rows of 
instruction while a wider issue width has more columns 
for more functional units.  SMT has the highest dispatch 
utilization.  The CMP has the same poor utilization as the 
superscalar, but it has more functional units and a faster 



  

clock due to the improved layout efficiency.  The POSM 
combines the advantages and disadvantages of both CMP 
and SMT. 

Figure 1. POSM combines CMP and SMT 

 
 In this paper, we perform a detailed area estimate 
using routing and transistor level layout information to 
create our four processor configurations using 
comparable silicon resources.  We also perform a clock 
rate estimation using circuit simulation and delay 
estimates.   We then run cycle accurate simulations on 
four processor microarchitectures to evaluate 
performance.  The results show that area and system 
clock effects give an advantage to the smaller cores.  In 
addition, the SMT overhead is larger for the wide 
dispatch cores because SMT increases components that 
grow superlinear with the dispatch width.   
 The remainder of this paper is organized as follows.  
Section 2 discusses related work.  Section 3 shows the 
base CPU architecture used in this study.  Section 4 
describes the simulation methodology.  Section 5 
compares the performance of the different POSM, SMT, 
and CMP and CMP/SMT configurations using 3 different 
assumptions: equivalent execution resources, equivalent 
silicon area, and including system clock effects.  Section 
6 gives the conclusions and summarizes the results.     
 
2. Related Work 
 
 Prior research on SMT showed the advantages of 
latency tolerance and exposing parallelism through 
horizontal sharing [5, 8, 12].  A wide-dispatch SMT was 
also compared to a CMP and found to have substantially 
higher throughput.  These studies assume “equivalent 
execution resources,” and demonstrated the advantages 
of horizontal sharing over the hardware-partitioned 
approach of CMP.  The area impact from adding SMT 
was assumed to be negligible and was ignored in the 
results.  The faster clock rate of a CMP was 
acknowledged, but was also not included in the results. 

 Additional research combined SMT and CMP [6].  
The results showed that the combination of SMT and 
CMP achieved nearly the same performance as a wide-
dispatch SMT, but assumed that the faster clock rate of 
the smaller CMP core would result in higher throughput.  
This paper also assumed “equivalent execution 
resources” and used a simple frequency scaling to adjust 
the clock rate.  We add area affects and perform a 
detailed circuit analysis that results in a substantially 
smaller frequency penalty. 
 The area effect of larger processor core layout 
structures was shown in the Hydra [9].  A 4-core, 2-
dispatch CMP was found to be equal in area to a 6-
dispatch superscalar, rather than the 8-dispatch processor 
when using equivalent execution resources results (4-
cores multiplied by 2-dispatch).  The wider total dispatch 
width of the CMP was shown to provide higher 
throughput.  This effort concentrated on CMP versus 
superscalar and did not look at SMT.  System clock 
effects are mentioned, but are not included in the results.   
 Area estimates were also made on SMT processors 
[3].  The area overhead of SMT was shown to be 
substantial for 8 threads, but provided a higher 
throughput than alternative microarchitecture techniques.  
The layout overhead of SMT is in addition to the 
overhead of the larger processor core of a wide-dispatch 
processor. 
 The power dissipation of SMT was also explored 
[11].  This compared SMT to superscalar and found the 
SMT had higher power efficiency.  However, the power 
efficiency of the smaller, more efficient layout of the 
CMP core remains unexplored. 
 This research combines all of the above techniques, 
except for power dissipation that is reserved for future 
research.  If an SMT processor is compared with a CMP, 
then both the area and clock cycle effects of the 
underlying processor cores must be taken into account.   
Ignoring the area effects of a smaller core gives a large 
advantage to the wide-issue processor.  Including the 
SMT layout overhead increases this effect.  Ignoring the 
system clock effect also gives a large advantage to the 
wide-dispatch processor, while simply scaling the clock 
and ignoring microarchitecture enhancements gives a 
large advantage to the smaller CMP cores.  The accuracy 
of the results then depends on the accuracy of the layout 
estimates and clock cycle analysis.   
 
3. Processor microarchitecture 
configuration  
 
 The base processor we are using for this research is 
derived from the MIPS R10000 [1, 15].  We extend the 
R10000  by  increasing  its  functional  unit  resources  to  

Thread 5

Thread 6

Thread 7

Thread 8

Stall

Thread 1

Thread 2

Thread 3

Thread 4

Superscalar

INT MEM FP

1

2

3

4

5

6

7

SMT

INT MEM FP

1

2

3

4

5

6

7

Super
-scalar

INT
/MEM

FP

CMP-p2

1

2

3

4

5

6

7

8

9

FP INT
/MEM

Super
-scalar SMT

INT
/MEM

FP

POSM-p2

1

2

3

4

5

6

7

8

9

FP INT
/MEM

SMT

9 instr 20 instr 13 instr 33 instr



  

create the wider dispatch processors and then add SMT 
threads.  Note that there are an unlimited number of 
possible configurations that could be tried.  However we 
maintain the processor configurations as close as possible 
to the prior research efforts [5, 6, 8, 12].  These prior 
SMT/CMP papers also used a fixed pipeline.  We 
attempt to maintain the same pipeline except where 
forced to add a pipeline stage due to excessive growth in 
critical path delay.   

The SMT processor notation is taken from [12]: 
SMT.1.8 corresponds to an SMT processor with a single 
cache-line fetch and 8 threads.  However, we add two 
additional parameters to identify the various processor 
configurations under study: the processor pipeline 
resource width and the number of on-chip processors.  
Hence we have ARCH.pW.fX.tY.dZ where ARCH is the 
type of microarchitecture (CMP, SMT, or POSM), pW is 
the number of on-chip processor cores, fX is the number 
of fetched cache-lines per cycle, tY is the number of 
threads, and dZ is the processor pipeline resource width.  
The pW parameter is the total number of cores per 
processor, while the fX, tY, and dZ parameters are per 
processor core.   
 
3.1. Defining the four processor configurations 
with equivalent execution resources 
 
 The POSM.p4.f1.t2.d4 has four R10000 processors.  
The other processor configurations are assumed to have 
an equivalent total set of execution resources.  The entire 
processor resources are scaled linearly as done in prior 
research [5, 6, 8, 12].   
 The second level translation look-aside buffers (TLB) 
and branch prediction unit had additional changes prior 
to scaling to the different processor configurations.  The 
level-2 TLB is increased by a factor of 4 because SMT 
places more pressure on the TLB unit.  Also, a single 
level of larger private resources increases resource 
partitioning which would reduce performance. A smaller 
level-1 resource backed by a large, shared second-level 
resource allows more flexibility for resource sharing.   

 The branch predictor is also changed from a branch 
target buffer (BTB) to a gshare unit with a 1K pattern 
history table (PHT).  The R10000-d9 has a wider issue 
rate and deeper pipeline which results in a higher branch 
mispredict penalty.  Thus the wide issue processor makes 
use of the larger branch predictor (4K PHT).  An on-chip 
level-2 cache (512KB) is added to backup the level-1 
cache and reduce the load on the external bus.  The 
original 16MB level-2 cache becomes a level-3 cache.   
 The processor cores are stepped out across the die, 
while only a single instance of I/O, miscellaneous, JTAG, 
L2 cache interface bus, MESI cache coherence, and 
external interface logic are needed.  The cache coherent 
interface also includes an extra pipeline stage.  Table 1 
shows the processor resources for a trade based on 
equivalent execution resources.   
 
3.2. Defining processor configurations with 
equivalent silicon resources 
 
 This section extends the SMT/CMP comparisons by 
using equivalent silicon resources as the basis.  All the 
processor configurations are adjusted to be as close as 
possible in area to the POSM.p4.f1.t2.d4, but rounded to 
a higher processor resource width.  We extrapolate the 
R10000 (originally designed in 1996 0.35µm technology) 
to 0.18µm (2000 technology).  We then add SMT 
features to this design. 
 We calculate the SMT processor area by scaling the 
individual layout blocks due to the increased number of 
functional units and the addition of SMT threads [3].   
The register files and remapping tables are the most 
critical layout blocks for SMT.  The register file is a 
block that increases by O(d3), where d is the dispatch 
width, because the RAM cell grows in the X dimension 
due to the increased number of ports, and in the Y 
dimension because of the added word lines, and times the 
increased number of renaming registers.  The remapping 
tables, register files,and instruction queue areas were 
calculated using a clustered layout implementation.   
Clustering reduces the penalty substantially for large

 
Table 1. Processor configuration with comparable execution units  

Number of functional units per core POSM 
configuration 

L1 
data 
TLB 
entries 
per 
core 

L1 
data 
cache 
per 
core 
(KB) 

Branch 
pred. 
(BTB, 
PHT)  
entries per 
core 

Instr. 
queue 
entries 
per core 

# 
ALU/ 
(MUL) 

# 
FP 
ALU 

# 
FP 
MUL 

# 
LD/ 
ST 

Total 
issue 
width 
(#proc * 
issue) 

SMT.p1.f2.t8.d16 32 128 2K, 4K 64 8/(4) 4 4 4 1*20=20 
POSM.p2.f2.t4.d8 16 64 1K, 2K  32 3/(2) 2 2 2 2*10=20 
POSM.p4.f1.t2.d4 8 32 .5K, 1K  16 2/(1) 1 1 1 4*5=20 
CMP.p8.f1.t1.d2 4 16 .25K, 0.5K 8 1/(1) 1 (1) 1 8*3=24 



  

register file arrays.  However this does add a cycle penalty 
when bypassing between clusters.  SMT provides latency 
tolerance and will dispatch ready instructions from other 
threads, so the associated performance penalty will not be 
as large as in a single-threaded processor.  Hence we 
assumed a 0-cycle intercluster bypass penalty, giving the 
wide-dispatch SMT processor a slight advantage. 
 We validated our layout estimation model by using a 
256K L2 cache and comparing with the Stanford Hydra 
(table 2).  The starting layout size of the R10K is the same.  
The 6-wide dispersal processor is 180mm2 versus 223mm2, 
which is 43mm2 or 19.3% more conservative. 10mm2 of 
this difference is because we used 96 instruction queue 
entries instead of 128, and 7mm2 because we round down 
when adding the FP multiplier because this is an expensive 
unit. 
 Our estimates show that an 8-dispatch processor 
(POSM.p1.f1.t1.d8) can fit within the same area that the 
Hydra assumed for a 6-dispatch processor.  The 4-
processor configurations are within 4.3%.  We believe the 
clustered register file and the block-by-block layout 
estimate performed in this study  are  more accurate for the  

wide dispatch processors [3].  In any case, our estimates 
are more favorable for the wide dispersal processors, 
allowing more functional units within a fixed area for the 
larger cores. 
 Table 3 shows the area results of the POSM 
configurations assuming comparable silicon resources.     
Columns 1-2 give the name of the functional block and the 
VFDOHG� ���� P� 0,36� 5��.�� � 7KH� UHPDLQLQJ� FROXPQV��

show  the  SMT/CMP   processor   configurations.      Each 
 
Table 2. 6-wide dispersal processor with 256K cache 
size compared with prior research   

Processor 
configuration 

MIPS 
R10K 
d6 .25  
(mm2) 

MIPS 
R10K 
d6  .18  
(mm2) 

Incr. of 
POSM 
versus 
Hydra 

Hydra.p1.f1.t1.d6 430 223   
CMP.p1.f1.t1.d6  180 -19.3 % 
CMP.p1.f1.t1.d8  218 -2.5% 
Hydra.p4.f1.t1.d2 424 220  
CMP.p4.f1.t1.d2  210.5 -4.3% 

 
 

 
Table 3. POSM configuration summary using .18•m technology 

Single processor Two processor CMP Four Processor CMP 8 Proc. Functional Block MIPS 
R10K with 
512K L2  
(mm2) 

Super-
scalar 
.p1.f1. 
t1.d9 
(mm2) 

POSM 
.p1.f2. 
t8.d9 with 
SMT 
(mm2) 

CMP 
.p2.f1 
.t1.d6  
 (mm2) 

POSM 
.p2.t2 
.t4.d6  
with SMT 
(mm2) 

CMP 
.p4.f1 
.t1.d4  
{4 R10Ks} 
(mm2) 

POSM 
.p4.f1 
.t2.d4  
with SMT 
(mm2) 

CMP 
.p8.f1 
.t1.d2 
 (mm2) 

Dcache 5.2 26.0 26.0 13.0 13.0 5.2 5.2 2.6 
Icache 5.2 20.8 26.0 10.4 13.0 5.2 5.2 2.6 
TLB 1.3 10.1 12.6 4.4 5.7 1.9 1.9 0.9 
Fetch, BPred 2.0 6.7 21.1 4.5 10.7 2.9 3.4 1.6 
Decode 1.1 2.5 5.1 1.7 3.4 1.1 1.1 0.6 
Out-of-Order 
execution 

9.9 54.6 86.6 24.1 33.2 10.1 11.9 4.8 

Register Files 2.9 12.8 40.5 5.9 12.9 2.9 4.3 1.2 
Arithmetic Units 6.5 30.8 30.8 12.9 12.9 6.5 6.5 4.1 
Misc. 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 
Routing 26.4 59.3 59.3 39.5 39.5 26.4 26.4 13.2 

Total Core 
Processor 

62.8 226.1 310.4 118.9 146.8 64.6 68.3 34.8 

         
Misc. 6.1 8.5 6.1 6.1 6.1 6.1 6.1 6.1 
Cache coherence 0 0 0 6.3 6.3 12.5 12.5 25.0 
512K L2 Cache 110 110 110 110 110 110 110 110 
I/O 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 

Total CMP area 192.5 355.9 440.1 373.8 429.5 400.5 415.4 432.9 



  

 
Table 4. Area calculation summary for comparable silicon resources 

Number of functional units per core POSM configuration Area 
(mm2) 

SMT 
over-
head 

Instr. 
queue 
entries 

# 
ALU/ 
MUL 

# 
FP 
ALU 

# 
FP 
MUL 

# 
LD/ 
SW 

Total issue 
width 
(#cores * 
issue) 

SMT.p1.f2.t8.d9 440.1 24% 36 5/(3) 3 2 3 1*13=13 
POSM.p2.f2.t4.d6 429.5 15% 24 3/(2) 2 1 2 2*8=16 
POSM.p4.f1.t2.d4 415.4 4% 16 2/(1) 1 1 1 4*5=20 
CMP.p8.f1.t1.d2 432.9 0% 8 1/(1) 1 (1) 1 8*3=24 

 
configuration is shown first with scalar cores and then with 
SMT added.  The CMP.p8 already has 8 multiprocessors 
so SMT is not added.  The sub-total for the total core 
processor is multiplied by the number of CMP processors 
and added to the level-2 cache, I/O, and miscellaneous 
overhead to arrive at the total chip area. 
 Table 4 gives the processor resources for the equivalent 
silicon resource comparison.  The POSM with 4 processors 
(POSM.p4.f1.t2.d4) is the baseline.  The other processor  
configurations are allowed to have equal or slightly larger 
areas.  The SMT overhead increases with the core size 
because the larger register files and remapping tables grow 
at a super linear rate.  The issue width increases with the 
number of CMP partitions because of the increased layout 
efficiency of the smaller core processors.   
 
3.3. Defining the pipeline stages and clock cycle 
 
 The larger the processor, the more difficult it becomes 
to maintain a fast clock rate without adding additional 
pipeline stages or more exotic microarchitecture techniques 
that affect the instructions per cycle (IPC) [4].  The smaller 
core processors have shorter pipelines and/or faster clock 
rates.     Prior SMT/CMP research assumed a fixed 
pipeline and then scaled the system clock based on the 
increased circuit and routing delays without any further 
microarchitecture modifications [6].   This simplistic 
approach is heavily biased in favor of the smaller processor 
cores since it ignores possible pipeline improvements.   
The issue stage delay increases by 300% when going to a 
larger processor core.  We attempt to solve the critical path 
problems as they are created through increasing the core 
processor  resources,  but  with  as  minimal  impact  to  the  
original pipeline as possible.   Our calculations including 
pipelining and clustering shows a system clock increase of 
about 13% for each doubling of the processor area.  The 
penalty of an added pipeline stage was shown to be less 
than 2% for single-thread performance [13]. 

 The processor pipelines for each of the POSM 
configurations are shown in Table 5.  The 
POSM.p4.f1.t4.d4 and CMP.p8.f1.t1.d2 pipelines are 
taken directly from the MIPS R10000.  However, the 
POSM.p2.f2.t4.d6 and the SMT.p1.f2.t8.d9 require longer 
pipeline stages due to larger processor area and increased 
logic paths. 
 We create two partitions within the SMT.p1.f2.t8.d9 
processor because of the extensive instruction issue logic 
delay, but did not include the extra stage delay of inter 
cluster forwarding.   The wakeup logic becomes slower as 
the number of entries in the instruction window grows.  
Also, a pass through the wakeup logic is performed for 
each issued instruction.   The critical path values shown in 
table 5 are derived from published circuit delays [10, 14].    
 We normalize the clock rates of the processors based 
on the POSM.p4.f1.t2.d4 processor to give a Normalized 
IPC (NIPC).   
 
4. Simulation methodology 
 
 SMT requires a detailed simulator to accurately model 
the effects of pipeline and memory latency tolerance.  
Thus, a detailed simulation must be performed that 
accurately models the active instructions and their data 
dependencies.  First, we need to model the SimpleScalar  
version 2.0 simulator more closely to the R10000 [2].  
Second, we add SMT support.  Finally, we add multi-
processing.   
 A multi-program workload is used because it is easy to 
model and exists for workstation and server environments.  
A multi-threaded workload has more same-type resource 
bottlenecks as well as issues with extracting parallelism.  A 
multi-threaded workload also has beneficial sharing within 
the caches while a multi-programmed workload does not.  
We explore the processing extremes, single-threaded and 
multi-programmed workloads and discuss how POSM can 
be combined with other techniques to increase thread

 
 
 
 



  

Table 5. Critical path delays 
Processor 
configuration 

Fetch 
(ns) 

Decode 
(ns) 

Rename 
(ns) 

Issue 
(ns) 

Reg. 
Fetch 
(ns) 

Execute 
plus 
bypass 
(ns) 

Operand 
fetch 
(ns) 

Retire 
(ns) 

System 
clock or 
max delay 
(ns) 

CMP.p8.f1.t1.d2 1.15 .6          +       .55 .39        +       .58 1.2 1.16 .55 1.2 
POSM.p4.f1.t2.d4 1.3 .65        +       .65 .65        +       .65 1.3 1.3 .65 1.3 
POSM.p2.f2.t4.d6 1.46 .75        +       .7 1.32 .8 1.4 1.6/2** .75 1.46 
SMT.p1.f2.t8.d9  1.63 .80        +       .8/2* 2.63/2* 1.0/2* 1.6 1.9/2** .85 1.63 

*The divide by 2 is because the delay for this SMT processor stage assumes a clustered layout structure. 
**These operand fetch accesses were pipelined and have two cycles to complete. 
 
parallelism.  While not explored in this research, the layout 
area and system clock effects are expected to affect multi-
threaded workloads in a similar fashion.  More total 
functional units and a faster clock rate will improve both 
multiprogrammed and multithreaded performance. 
 We test several SMT processor configurations using the 
Spec95 benchmarks. 10 benchmarks are used, 5 integer 
and 5 floating-point. There are a huge number of possible 
combinations of benchmark runs on the various processor 
configurations and various numbers of threads.  Thus 10 
runs with a selection of spec95 benchmarks (compress, 
fpppp, hydro2d, ijpeg, li, m88ksim, perl, swim, turb3d, 
wave) are created and then stored.  The selected 
benchmarks are then run on each configuration.  Each 
simulation is run for (number of threads)*(100 million 
instructions).  A total of 360 billion instructions are run for 
this study.  
 
5. Simulation results 
 
 Prior SMT research used comparable execution 
resources as the comparison basis when comparing SMT 
and CMP [5,6,8,12]. However, layout area grows much 
faster than linear with respect to the dispatch and issue 
width of the processor.  Thus using comparable silicon 
resources affects the performance trade-off [9].   
 This section follows the same format as section 4: 
simple scaling using equivalent execution resources, 
impact of using equivalent silicon resources, and 
normalized system clock.  Thus we see the results with 
optimistic assumptions, then apply layout constraints and 
then clock cycle effects. 
 
5.1.  POSM with comparable execution units 
 
 This section uses the processor configurations from 
Table 2 and is similar to prior research [5, 6, 8, 12].  
However, SMT is added to the intermediate CMP cores as 
well as the large processor, so each chip has an equal 
number of threads [12].  CMP results can be extracted 
from the POSM core results by only considering the 

number of threads up to the hardware limit.  Thus a 
CMP.p2.f1.t1.d2 is equivalent to a POSM.p2.f2.t4.d4 with 
only two threads (one per processor core).   
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Figure 6. Performance assuming equivalent execution 
resources. 
 
 Performance increases quickly with additional threads 
on all the configurations (figure 6).  The large SMT 
processor has the highest performance over the entire range 
of threads because of the flexibility of vertical and 
horizontal sharing.  However, note that the negative area 
and system clock effects of SMT and larger processors 
have not been included. 
 
5.2. POSM based on equal silicon area 
 
 This section extends the tradeoff by adding the effects 
of layout implementation.  Hence the processor 
configurations are taken from Table 4.  Including the 
inefficiencies of larger layout structures reduces the 
performance advantages of the processors with larger 
cores. 
 The results are shown in figure 7.  The SMT.p1.f2.t8.d9 
has the least number of functional units, but the most 



  

horizontal sharing.  Hence, it has the highest single-thread 
performance.  However, the smaller total number of 
functional units limits SMT throughput. 
 The CMP.p8.f1.t1.d2 performance increases linearly as 
each available thread initiates a program.  This is expected 
since each additional thread has a small, but private set of 
resources.  However, it is worse than the 
POSM.p4.f1.t2.d4 except for 8 threads because of limited 
caches, branch predictors, and out-of-order logic.  
Therefore the CMP.p8.f1.t1.d2 has the largest number of 
functional units, but they are frequently idle due to cache 
misses, branch mispredicts, and data dependencies. 
Comparing figure 7 with figure 6 shows that the layout 
inefficiencies of the larger processor cores reduce 
performance. 
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Figure 7. Equal silicon area performance comparison 
 
 
 
5.3. POSM based on equal silicon area with 
system clock effects 
 
 This section adds the circuit delay and pipeline effects 
discussed in section 2.3.  The results are shown in figure 8.  
Here the IPC is reduced by the internal pipeline 
dependencies during simulation and then scaled by the 
system clock normalization factor. Thus the 
SMT.p1.f2.t8.d9 and POSM.p2.f2.t4.d6 processors are 
negatively affected by the longer pipeline and slower 
system clock.    
 The SMT.p1.f2.t8.d9 still has the highest single-thread 
performance.  However, the performance gap is reduced. 
The POSM.p2.f2.t4.d6 has 4% lower single-thread 
performance, but much higher throughput than the 
SMT.p1.f2.t8.d9.  The CMP.p8.f1.d2 processor achieves 
the highest throughput.   
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Figure 8. Equal silicon area and system clock effects 
 
 Comparing figure 8 versus figure 7 shows that ignoring 
the effects of circuit delays on the processor throughput 
gives the larger processor cores a big advantage.   

 
6. Conclusion 
 
 Prior research has already shown that a CMP has higher 
throughput than a wide issue superscalar processor.  
Separate research has analyzed SMT and CMP processors 
and even CMP/SMT processors.  We have extended this 
research by comparing more multi-core processor 
configurations, adding layout area estimates, and including 
clock cycle analysis.  The layout and clock cycle analysis 
favored the wide dispersal SMT.  The SMT processor did 
show the best single-thread performance with improved 
throughput over a single-threaded processor core even 
when layout effects are included.  However, the CMP 
layout efficiencies offset the microarchitecture inefficiency 
of fixed processor core partitions for maximum throughput 
performance that far surpasses the wide issue SMT 
processor.   
 
 In more detail, our results show that: 
 
• Adding pipeline stages resulted in a 13% clock rate 

reduction when doubling the processor core, rather 
than 170% from simply scaling based on the critical 
path. 

• The SMT layout overhead increases with the processor 
dispatch width due to the larger register files, 
remapping tables, and instruction queues. 

• Performance evaluations using “comparable silicon 
resources” gives multi-core processors more 
functional units and a higher clock rate, resulting in 
higher throughput than single-core SMT processors. 



  

 Our research showed the throughput potential of the 
POSM microarchitecture.  However, substantial effort is 
needed in compiler research to expose more parallelism in 
order to reduce the run time of a single multi-threaded 
program.   
 Another area that was not discussed is power 
dissipation.  This is a key design consideration as the 
number of functional units on a single die reaches the point 
where it is difficult to cool the device.  SMT maintains a 
consistently high throughput, which increases the 
performance per watt and reduces changes in current 
(di/dt) while performing useful work.  However, the larger 
SMT processor also has larger layout structures.  Larger 
layout structures have higher layout parasitics, which 
increases the average power dissipation.  SMT also reduces 
wasted execution, which reduces power.  A thorough 
analysis is beyond the scope of this paper, but is part of 
ongoing research.  
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