

 Area and System Clock Effects on SMT/CMP Processors

 James Burns Jean-Luc Gaudiot
 Intel University of Southern California
 Santa Clara, California Los Angeles, California
 james.s.burns@intel.com gaudiot@usc.edu

 Abstract
 Two approaches to high throughput processors are
Chip Multi-Processing (CMP) and Simultaneous Multi-
Threading (SMT). CMP increases layout efficiency,
which allows more functional units and a faster clock
rate. However, CMP suffers from hardware partitioning
of functional resources. SMT increases functional unit
utilization by issuing instructions simultaneously from
multiple threads. However, a wide-issue SMT suffers
from layout and technology implementation problems.
 We use silicon resources as our basis for comparison
and find that area and system clock have a large effect
on the optimal SMT/CMP design trade. We show the
area overhead of SMT on each processor and how it
scales with the width of the processor pipeline and the
number of SMT threads.
 The wide issue SMT delivers the highest single-
thread performance with improved multi-thread
throughput. However multiple smaller cores deliver the
highest throughput.

1. Introduction

 Recent advances in VLSI have created challenges to
continuing the current processor evolutionary trend. The
smaller minimum technology spacing allows more system
integration. However, most programs lack the instruction
level parallelism to take advantage of the increased
number of functional units. In addition, modern
processors have deeper pipelines and larger relative
latencies for memory accesses and routing delays. Two
techniques to solve some of these problems are Chip
Multi-Processing (CMP) and Simultaneous Multi-
Threading (SMT).
 SMT issues instructions to functional units
simultaneously from multiple threads. This creates

horizontal and vertical sharing which increases
throughput through thread-level parallelism and tolerates
processor and memory latencies to increase processor
efficiency. The problem with a large SMT is that layout
blocks and circuit delays grow faster than linear with
issue width. In addition, multiple threads share the same
level-1 cache, TLB, and branch predictor units, which
causes contention. The resulting increase in cache misses
and branch mispredict rates limits performance.
 On the other hand, CMP increases layout efficiency,
resulting in more functional units within the same silicon
area plus faster clock rates [9]. The problem with CMP
is that the hardware partition of on-chip processors
restricts performance. The hardware partition results in
smaller resources since the level-1 caches, TLBs, branch
predictors, and functional units are divided among the
multiple processors. Hence single-threaded programs
cannot use resources from the other processor cores, and
the smaller level-1 resources per core causes increased
miss rates.
 Consequently, we design the Parallel On-chip
Simultaneous Multithreaded processor (POSM), which is
an efficient combination of CMP and SMT. Hence, it
still has the CMP advantages of more functional units
and a faster clock than a wide-issue processor. The
addition of SMT increases the efficiency of the
underlying CMP. However, a wide-issue SMT has a
microarchitectural advantage because there is no
hardware partition between processor resources.
 Figure 1 shows an example of the different types of
processors: superscalar, SMT, CMP, and POSM. Each
box represents a potential issue to a functional unit.
Processors with a faster clock have more rows of
instruction while a wider issue width has more columns
for more functional units. SMT has the highest dispatch
utilization. The CMP has the same poor utilization as the
superscalar, but it has more functional units and a faster

clock due to the improved layout efficiency. The POSM
combines the advantages and disadvantages of both CMP
and SMT.

Figure 1. POSM combines CMP and SMT

 In this paper, we perform a detailed area estimate
using routing and transistor level layout information to
create our four processor configurations using
comparable silicon resources. We also perform a clock
rate estimation using circuit simulation and delay
estimates. We then run cycle accurate simulations on
four processor microarchitectures to evaluate
performance. The results show that area and system
clock effects give an advantage to the smaller cores. In
addition, the SMT overhead is larger for the wide
dispatch cores because SMT increases components that
grow superlinear with the dispatch width.
 The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 shows the
base CPU architecture used in this study. Section 4
describes the simulation methodology. Section 5
compares the performance of the different POSM, SMT,
and CMP and CMP/SMT configurations using 3 different
assumptions: equivalent execution resources, equivalent
silicon area, and including system clock effects. Section
6 gives the conclusions and summarizes the results.

2. Related Work

 Prior research on SMT showed the advantages of
latency tolerance and exposing parallelism through
horizontal sharing [5, 8, 12]. A wide-dispatch SMT was
also compared to a CMP and found to have substantially
higher throughput. These studies assume “equivalent
execution resources,” and demonstrated the advantages
of horizontal sharing over the hardware-partitioned
approach of CMP. The area impact from adding SMT
was assumed to be negligible and was ignored in the
results. The faster clock rate of a CMP was
acknowledged, but was also not included in the results.

 Additional research combined SMT and CMP [6].
The results showed that the combination of SMT and
CMP achieved nearly the same performance as a wide-
dispatch SMT, but assumed that the faster clock rate of
the smaller CMP core would result in higher throughput.
This paper also assumed “equivalent execution
resources” and used a simple frequency scaling to adjust
the clock rate. We add area affects and perform a
detailed circuit analysis that results in a substantially
smaller frequency penalty.
 The area effect of larger processor core layout
structures was shown in the Hydra [9]. A 4-core, 2-
dispatch CMP was found to be equal in area to a 6-
dispatch superscalar, rather than the 8-dispatch processor
when using equivalent execution resources results (4-
cores multiplied by 2-dispatch). The wider total dispatch
width of the CMP was shown to provide higher
throughput. This effort concentrated on CMP versus
superscalar and did not look at SMT. System clock
effects are mentioned, but are not included in the results.
 Area estimates were also made on SMT processors
[3]. The area overhead of SMT was shown to be
substantial for 8 threads, but provided a higher
throughput than alternative microarchitecture techniques.
The layout overhead of SMT is in addition to the
overhead of the larger processor core of a wide-dispatch
processor.
 The power dissipation of SMT was also explored
[11]. This compared SMT to superscalar and found the
SMT had higher power efficiency. However, the power
efficiency of the smaller, more efficient layout of the
CMP core remains unexplored.
 This research combines all of the above techniques,
except for power dissipation that is reserved for future
research. If an SMT processor is compared with a CMP,
then both the area and clock cycle effects of the
underlying processor cores must be taken into account.
Ignoring the area effects of a smaller core gives a large
advantage to the wide-issue processor. Including the
SMT layout overhead increases this effect. Ignoring the
system clock effect also gives a large advantage to the
wide-dispatch processor, while simply scaling the clock
and ignoring microarchitecture enhancements gives a
large advantage to the smaller CMP cores. The accuracy
of the results then depends on the accuracy of the layout
estimates and clock cycle analysis.

3. Processor microarchitecture
configuration

 The base processor we are using for this research is
derived from the MIPS R10000 [1, 15]. We extend the
R10000 by increasing its functional unit resources to

Thread 5

Thread 6

Thread 7

Thread 8

Stall

Thread 1

Thread 2

Thread 3

Thread 4

Superscalar

INT MEM FP

1

2

3

4

5

6

7

SMT

INT MEM FP

1

2

3

4

5

6

7

Super
-scalar

INT
/MEM

FP

CMP-p2

1

2

3

4

5

6

7

8

9

FP INT
/MEM

Super
-scalar SMT

INT
/MEM

FP

POSM-p2

1

2

3

4

5

6

7

8

9

FP INT
/MEM

SMT

9 instr 20 instr 13 instr 33 instr

create the wider dispatch processors and then add SMT
threads. Note that there are an unlimited number of
possible configurations that could be tried. However we
maintain the processor configurations as close as possible
to the prior research efforts [5, 6, 8, 12]. These prior
SMT/CMP papers also used a fixed pipeline. We
attempt to maintain the same pipeline except where
forced to add a pipeline stage due to excessive growth in
critical path delay.

The SMT processor notation is taken from [12]:
SMT.1.8 corresponds to an SMT processor with a single
cache-line fetch and 8 threads. However, we add two
additional parameters to identify the various processor
configurations under study: the processor pipeline
resource width and the number of on-chip processors.
Hence we have ARCH.pW.fX.tY.dZ where ARCH is the
type of microarchitecture (CMP, SMT, or POSM), pW is
the number of on-chip processor cores, fX is the number
of fetched cache-lines per cycle, tY is the number of
threads, and dZ is the processor pipeline resource width.
The pW parameter is the total number of cores per
processor, while the fX, tY, and dZ parameters are per
processor core.

3.1. Defining the four processor configurations
with equivalent execution resources

 The POSM.p4.f1.t2.d4 has four R10000 processors.
The other processor configurations are assumed to have
an equivalent total set of execution resources. The entire
processor resources are scaled linearly as done in prior
research [5, 6, 8, 12].
 The second level translation look-aside buffers (TLB)
and branch prediction unit had additional changes prior
to scaling to the different processor configurations. The
level-2 TLB is increased by a factor of 4 because SMT
places more pressure on the TLB unit. Also, a single
level of larger private resources increases resource
partitioning which would reduce performance. A smaller
level-1 resource backed by a large, shared second-level
resource allows more flexibility for resource sharing.

 The branch predictor is also changed from a branch
target buffer (BTB) to a gshare unit with a 1K pattern
history table (PHT). The R10000-d9 has a wider issue
rate and deeper pipeline which results in a higher branch
mispredict penalty. Thus the wide issue processor makes
use of the larger branch predictor (4K PHT). An on-chip
level-2 cache (512KB) is added to backup the level-1
cache and reduce the load on the external bus. The
original 16MB level-2 cache becomes a level-3 cache.
 The processor cores are stepped out across the die,
while only a single instance of I/O, miscellaneous, JTAG,
L2 cache interface bus, MESI cache coherence, and
external interface logic are needed. The cache coherent
interface also includes an extra pipeline stage. Table 1
shows the processor resources for a trade based on
equivalent execution resources.

3.2. Defining processor configurations with
equivalent silicon resources

 This section extends the SMT/CMP comparisons by
using equivalent silicon resources as the basis. All the
processor configurations are adjusted to be as close as
possible in area to the POSM.p4.f1.t2.d4, but rounded to
a higher processor resource width. We extrapolate the
R10000 (originally designed in 1996 0.35µm technology)
to 0.18µm (2000 technology). We then add SMT
features to this design.
 We calculate the SMT processor area by scaling the
individual layout blocks due to the increased number of
functional units and the addition of SMT threads [3].
The register files and remapping tables are the most
critical layout blocks for SMT. The register file is a
block that increases by O(d3), where d is the dispatch
width, because the RAM cell grows in the X dimension
due to the increased number of ports, and in the Y
dimension because of the added word lines, and times the
increased number of renaming registers. The remapping
tables, register files,and instruction queue areas were
calculated using a clustered layout implementation.
Clustering reduces the penalty substantially for large

Table 1. Processor configuration with comparable execution units

Number of functional units per core POSM
configuration

L1
data
TLB
entries
per
core

L1
data
cache
per
core
(KB)

Branch
pred.
(BTB,
PHT)
entries per
core

Instr.
queue
entries
per core

ALU/
(MUL)

FP
ALU

FP
MUL

LD/
ST

Total
issue
width
(#proc *
issue)

SMT.p1.f2.t8.d16 32 128 2K, 4K 64 8/(4) 4 4 4 1*20=20
POSM.p2.f2.t4.d8 16 64 1K, 2K 32 3/(2) 2 2 2 2*10=20
POSM.p4.f1.t2.d4 8 32 .5K, 1K 16 2/(1) 1 1 1 4*5=20
CMP.p8.f1.t1.d2 4 16 .25K, 0.5K 8 1/(1) 1 (1) 1 8*3=24

register file arrays. However this does add a cycle penalty
when bypassing between clusters. SMT provides latency
tolerance and will dispatch ready instructions from other
threads, so the associated performance penalty will not be
as large as in a single-threaded processor. Hence we
assumed a 0-cycle intercluster bypass penalty, giving the
wide-dispatch SMT processor a slight advantage.
 We validated our layout estimation model by using a
256K L2 cache and comparing with the Stanford Hydra
(table 2). The starting layout size of the R10K is the same.
The 6-wide dispersal processor is 180mm2 versus 223mm2,
which is 43mm2 or 19.3% more conservative. 10mm2 of
this difference is because we used 96 instruction queue
entries instead of 128, and 7mm2 because we round down
when adding the FP multiplier because this is an expensive
unit.
 Our estimates show that an 8-dispatch processor
(POSM.p1.f1.t1.d8) can fit within the same area that the
Hydra assumed for a 6-dispatch processor. The 4-
processor configurations are within 4.3%. We believe the
clustered register file and the block-by-block layout
estimate performed in this study are more accurate for the

wide dispatch processors [3]. In any case, our estimates
are more favorable for the wide dispersal processors,
allowing more functional units within a fixed area for the
larger cores.
 Table 3 shows the area results of the POSM
configurations assuming comparable silicon resources.
Columns 1-2 give the name of the functional block and the
VFDOHG� ���� P� 0,36� 5��.�� � 7KH� UHPDLQLQJ� FROXPQV��

show the SMT/CMP processor configurations. Each

Table 2. 6-wide dispersal processor with 256K cache
size compared with prior research

Processor
configuration

MIPS
R10K
d6 .25
(mm2)

MIPS
R10K
d6 .18
(mm2)

Incr. of
POSM
versus
Hydra

Hydra.p1.f1.t1.d6 430 223
CMP.p1.f1.t1.d6 180 -19.3 %
CMP.p1.f1.t1.d8 218 -2.5%
Hydra.p4.f1.t1.d2 424 220
CMP.p4.f1.t1.d2 210.5 -4.3%

Table 3. POSM configuration summary using .18•m technology

Single processor Two processor CMP Four Processor CMP 8 Proc. Functional Block MIPS
R10K with
512K L2
(mm2)

Super-
scalar
.p1.f1.
t1.d9
(mm2)

POSM
.p1.f2.
t8.d9 with
SMT
(mm2)

CMP
.p2.f1
.t1.d6
 (mm2)

POSM
.p2.t2
.t4.d6
with SMT
(mm2)

CMP
.p4.f1
.t1.d4
{4 R10Ks}
(mm2)

POSM
.p4.f1
.t2.d4
with SMT
(mm2)

CMP
.p8.f1
.t1.d2
 (mm2)

Dcache 5.2 26.0 26.0 13.0 13.0 5.2 5.2 2.6
Icache 5.2 20.8 26.0 10.4 13.0 5.2 5.2 2.6
TLB 1.3 10.1 12.6 4.4 5.7 1.9 1.9 0.9
Fetch, BPred 2.0 6.7 21.1 4.5 10.7 2.9 3.4 1.6
Decode 1.1 2.5 5.1 1.7 3.4 1.1 1.1 0.6
Out-of-Order
execution

9.9 54.6 86.6 24.1 33.2 10.1 11.9 4.8

Register Files 2.9 12.8 40.5 5.9 12.9 2.9 4.3 1.2
Arithmetic Units 6.5 30.8 30.8 12.9 12.9 6.5 6.5 4.1
Misc. 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
Routing 26.4 59.3 59.3 39.5 39.5 26.4 26.4 13.2

Total Core
Processor

62.8 226.1 310.4 118.9 146.8 64.6 68.3 34.8

Misc. 6.1 8.5 6.1 6.1 6.1 6.1 6.1 6.1
Cache coherence 0 0 0 6.3 6.3 12.5 12.5 25.0
512K L2 Cache 110 110 110 110 110 110 110 110
I/O 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7

Total CMP area 192.5 355.9 440.1 373.8 429.5 400.5 415.4 432.9

Table 4. Area calculation summary for comparable silicon resources

Number of functional units per core POSM configuration Area
(mm2)

SMT
over-
head

Instr.
queue
entries

ALU/
MUL

FP
ALU

FP
MUL

LD/
SW

Total issue
width
(#cores *
issue)

SMT.p1.f2.t8.d9 440.1 24% 36 5/(3) 3 2 3 1*13=13
POSM.p2.f2.t4.d6 429.5 15% 24 3/(2) 2 1 2 2*8=16
POSM.p4.f1.t2.d4 415.4 4% 16 2/(1) 1 1 1 4*5=20
CMP.p8.f1.t1.d2 432.9 0% 8 1/(1) 1 (1) 1 8*3=24

configuration is shown first with scalar cores and then with
SMT added. The CMP.p8 already has 8 multiprocessors
so SMT is not added. The sub-total for the total core
processor is multiplied by the number of CMP processors
and added to the level-2 cache, I/O, and miscellaneous
overhead to arrive at the total chip area.
 Table 4 gives the processor resources for the equivalent
silicon resource comparison. The POSM with 4 processors
(POSM.p4.f1.t2.d4) is the baseline. The other processor
configurations are allowed to have equal or slightly larger
areas. The SMT overhead increases with the core size
because the larger register files and remapping tables grow
at a super linear rate. The issue width increases with the
number of CMP partitions because of the increased layout
efficiency of the smaller core processors.

3.3. Defining the pipeline stages and clock cycle

 The larger the processor, the more difficult it becomes
to maintain a fast clock rate without adding additional
pipeline stages or more exotic microarchitecture techniques
that affect the instructions per cycle (IPC) [4]. The smaller
core processors have shorter pipelines and/or faster clock
rates. Prior SMT/CMP research assumed a fixed
pipeline and then scaled the system clock based on the
increased circuit and routing delays without any further
microarchitecture modifications [6]. This simplistic
approach is heavily biased in favor of the smaller processor
cores since it ignores possible pipeline improvements.
The issue stage delay increases by 300% when going to a
larger processor core. We attempt to solve the critical path
problems as they are created through increasing the core
processor resources, but with as minimal impact to the
original pipeline as possible. Our calculations including
pipelining and clustering shows a system clock increase of
about 13% for each doubling of the processor area. The
penalty of an added pipeline stage was shown to be less
than 2% for single-thread performance [13].

 The processor pipelines for each of the POSM
configurations are shown in Table 5. The
POSM.p4.f1.t4.d4 and CMP.p8.f1.t1.d2 pipelines are
taken directly from the MIPS R10000. However, the
POSM.p2.f2.t4.d6 and the SMT.p1.f2.t8.d9 require longer
pipeline stages due to larger processor area and increased
logic paths.
 We create two partitions within the SMT.p1.f2.t8.d9
processor because of the extensive instruction issue logic
delay, but did not include the extra stage delay of inter
cluster forwarding. The wakeup logic becomes slower as
the number of entries in the instruction window grows.
Also, a pass through the wakeup logic is performed for
each issued instruction. The critical path values shown in
table 5 are derived from published circuit delays [10, 14].
 We normalize the clock rates of the processors based
on the POSM.p4.f1.t2.d4 processor to give a Normalized
IPC (NIPC).

4. Simulation methodology

 SMT requires a detailed simulator to accurately model
the effects of pipeline and memory latency tolerance.
Thus, a detailed simulation must be performed that
accurately models the active instructions and their data
dependencies. First, we need to model the SimpleScalar
version 2.0 simulator more closely to the R10000 [2].
Second, we add SMT support. Finally, we add multi-
processing.
 A multi-program workload is used because it is easy to
model and exists for workstation and server environments.
A multi-threaded workload has more same-type resource
bottlenecks as well as issues with extracting parallelism. A
multi-threaded workload also has beneficial sharing within
the caches while a multi-programmed workload does not.
We explore the processing extremes, single-threaded and
multi-programmed workloads and discuss how POSM can
be combined with other techniques to increase thread

Table 5. Critical path delays
Processor
configuration

Fetch
(ns)

Decode
(ns)

Rename
(ns)

Issue
(ns)

Reg.
Fetch
(ns)

Execute
plus
bypass
(ns)

Operand
fetch
(ns)

Retire
(ns)

System
clock or
max delay
(ns)

CMP.p8.f1.t1.d2 1.15 .6 + .55 .39 + .58 1.2 1.16 .55 1.2
POSM.p4.f1.t2.d4 1.3 .65 + .65 .65 + .65 1.3 1.3 .65 1.3
POSM.p2.f2.t4.d6 1.46 .75 + .7 1.32 .8 1.4 1.6/2** .75 1.46
SMT.p1.f2.t8.d9 1.63 .80 + .8/2* 2.63/2* 1.0/2* 1.6 1.9/2** .85 1.63

*The divide by 2 is because the delay for this SMT processor stage assumes a clustered layout structure.
**These operand fetch accesses were pipelined and have two cycles to complete.

parallelism. While not explored in this research, the layout
area and system clock effects are expected to affect multi-
threaded workloads in a similar fashion. More total
functional units and a faster clock rate will improve both
multiprogrammed and multithreaded performance.
 We test several SMT processor configurations using the
Spec95 benchmarks. 10 benchmarks are used, 5 integer
and 5 floating-point. There are a huge number of possible
combinations of benchmark runs on the various processor
configurations and various numbers of threads. Thus 10
runs with a selection of spec95 benchmarks (compress,
fpppp, hydro2d, ijpeg, li, m88ksim, perl, swim, turb3d,
wave) are created and then stored. The selected
benchmarks are then run on each configuration. Each
simulation is run for (number of threads)*(100 million
instructions). A total of 360 billion instructions are run for
this study.

5. Simulation results

 Prior SMT research used comparable execution
resources as the comparison basis when comparing SMT
and CMP [5,6,8,12]. However, layout area grows much
faster than linear with respect to the dispatch and issue
width of the processor. Thus using comparable silicon
resources affects the performance trade-off [9].
 This section follows the same format as section 4:
simple scaling using equivalent execution resources,
impact of using equivalent silicon resources, and
normalized system clock. Thus we see the results with
optimistic assumptions, then apply layout constraints and
then clock cycle effects.

5.1. POSM with comparable execution units

 This section uses the processor configurations from
Table 2 and is similar to prior research [5, 6, 8, 12].
However, SMT is added to the intermediate CMP cores as
well as the large processor, so each chip has an equal
number of threads [12]. CMP results can be extracted
from the POSM core results by only considering the

number of threads up to the hardware limit. Thus a
CMP.p2.f1.t1.d2 is equivalent to a POSM.p2.f2.t4.d4 with
only two threads (one per processor core).

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

1 2 3 4 5 6 7 8
Number of threads

IP
C

SMT.p1.f2.t8.d16
POSM.p2.f2.t4.d8
POSM.p4.f1.t2.d4
CMP.p1.f1.t1.d2

Figure 6. Performance assuming equivalent execution
resources.

 Performance increases quickly with additional threads
on all the configurations (figure 6). The large SMT
processor has the highest performance over the entire range
of threads because of the flexibility of vertical and
horizontal sharing. However, note that the negative area
and system clock effects of SMT and larger processors
have not been included.

5.2. POSM based on equal silicon area

 This section extends the tradeoff by adding the effects
of layout implementation. Hence the processor
configurations are taken from Table 4. Including the
inefficiencies of larger layout structures reduces the
performance advantages of the processors with larger
cores.
 The results are shown in figure 7. The SMT.p1.f2.t8.d9
has the least number of functional units, but the most

horizontal sharing. Hence, it has the highest single-thread
performance. However, the smaller total number of
functional units limits SMT throughput.
 The CMP.p8.f1.t1.d2 performance increases linearly as
each available thread initiates a program. This is expected
since each additional thread has a small, but private set of
resources. However, it is worse than the
POSM.p4.f1.t2.d4 except for 8 threads because of limited
caches, branch predictors, and out-of-order logic.
Therefore the CMP.p8.f1.t1.d2 has the largest number of
functional units, but they are frequently idle due to cache
misses, branch mispredicts, and data dependencies.
Comparing figure 7 with figure 6 shows that the layout
inefficiencies of the larger processor cores reduce
performance.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 3 4 5 6 7 8
Number of threads

IP
C

SMT.p1.f2.t8.d9
POSM.p2.f2.t4.d6
POSM.p4.f1.t4.d4
CMP.p8.f1.t4.d2

Figure 7. Equal silicon area performance comparison

5.3. POSM based on equal silicon area with
system clock effects

 This section adds the circuit delay and pipeline effects
discussed in section 2.3. The results are shown in figure 8.
Here the IPC is reduced by the internal pipeline
dependencies during simulation and then scaled by the
system clock normalization factor. Thus the
SMT.p1.f2.t8.d9 and POSM.p2.f2.t4.d6 processors are
negatively affected by the longer pipeline and slower
system clock.
 The SMT.p1.f2.t8.d9 still has the highest single-thread
performance. However, the performance gap is reduced.
The POSM.p2.f2.t4.d6 has 4% lower single-thread
performance, but much higher throughput than the
SMT.p1.f2.t8.d9. The CMP.p8.f1.d2 processor achieves
the highest throughput.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 3 4 5 6 7 8
Number of threads

N
IP

C

SMT.p1.f2.t8.d9

POSM.p2.f2.t4.d6

POSM.p4.f1.t2.d4

CMP.p8.f1.t1.d2

Figure 8. Equal silicon area and system clock effects

 Comparing figure 8 versus figure 7 shows that ignoring
the effects of circuit delays on the processor throughput
gives the larger processor cores a big advantage.

6. Conclusion

 Prior research has already shown that a CMP has higher
throughput than a wide issue superscalar processor.
Separate research has analyzed SMT and CMP processors
and even CMP/SMT processors. We have extended this
research by comparing more multi-core processor
configurations, adding layout area estimates, and including
clock cycle analysis. The layout and clock cycle analysis
favored the wide dispersal SMT. The SMT processor did
show the best single-thread performance with improved
throughput over a single-threaded processor core even
when layout effects are included. However, the CMP
layout efficiencies offset the microarchitecture inefficiency
of fixed processor core partitions for maximum throughput
performance that far surpasses the wide issue SMT
processor.

 In more detail, our results show that:

• Adding pipeline stages resulted in a 13% clock rate

reduction when doubling the processor core, rather
than 170% from simply scaling based on the critical
path.

• The SMT layout overhead increases with the processor
dispatch width due to the larger register files,
remapping tables, and instruction queues.

• Performance evaluations using “comparable silicon
resources” gives multi-core processors more
functional units and a higher clock rate, resulting in
higher throughput than single-core SMT processors.

 Our research showed the throughput potential of the
POSM microarchitecture. However, substantial effort is
needed in compiler research to expose more parallelism in
order to reduce the run time of a single multi-threaded
program.
 Another area that was not discussed is power
dissipation. This is a key design consideration as the
number of functional units on a single die reaches the point
where it is difficult to cool the device. SMT maintains a
consistently high throughput, which increases the
performance per watt and reduces changes in current
(di/dt) while performing useful work. However, the larger
SMT processor also has larger layout structures. Larger
layout structures have higher layout parasitics, which
increases the average power dissipation. SMT also reduces
wasted execution, which reduces power. A thorough
analysis is beyond the scope of this paper, but is part of
ongoing research.

7. Acknowledgements

The material reported in this paper is based upon work
supported in part by the National Science Foundation
under Grants No. CSA-0073527 and INT-9815742. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

Bibliography

[1] A. Ahi, Y. Chen, R. Conrad, R. Martin, R. Ramchandani,

M. Seddighnezhad, G. Shippen, H. Su, H. Sucar, N.
Vasseghi, W. Voegtli, K. Yeager, Yeffi, “R10000
Superscalar Microprocessor,” Hot Chips Symposium VII,
Stanford, California, August 1995.

[2] T. Austin, “SimpleScalar Architectural Research Tool Set,
Version 2.0.”
http://www.cs.wisc.edu/~mscalar/simplescalar.html.

[3] J. Burns, J-L Gaudiot, “Quantifying the SMT Layout
Overhead – Does SMT Pull Its Weight?” Proceedings of the
6th Annual High Performance Computer Architecture
(HPCA6), January 2000.

[4] K. Farkas, P.Chow, N.Jouppi, Z. Vranesic, “The
Multicluster Architecture: Reducing Cycle Time Through
Partitioning.” Proceedings of the 30th Annual International
Symposium on Microarchitecture. MICRO-30. December
1997.

[5] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, D. Tullsen,
“Simultaneous Multithreading: A Foundation for Next-
generation Processors”, IEEE Micro, September/October
1997.

[6] V. Krishnan, J. Torrellas, “A Clustered Approach to
Multithreaded Processors.” International Parallel Processing
Symposium, March, 1998.

[7] M. Lam, R. Wilson, “Limits of Control Flow on
Parallelism.” ISCA 1992.

[8] J. Lo, S. Eggers, Joel Emer, Henry Levy, Rebecca Stamm,
Dean Tullsen, “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous
Multithreading.” ACM Transactions on Computer Systems,
August 1997.

[9] K. Olukotun, B. Nayfeh, L. Hammond, Ken Wilson, and
Kunyung Chang, “The Case for a Single-Chip
Multiprocessor.” Proceedings Seventh International
Symposium of Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII) 1996,
http://www-hydra.standord.edu.

[10] S. Palacharla, Norman Jouppi, J. E. Smith, “Quantifying the
complexity of superscalar processors,” Tech. Rep. 1328,
University of Wisconsin-Madison, CS Department,
November 1996.

[11] J. Seng, D. Tullsen, G. Cai, “Power-Sensitive Multithreaded
Architecture.” Proceedings of the 2000 International
Conference on Computer Design, ICCD 2000.

[12] D. Tullsen, Susan Eggers, Henry Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism.”
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, 1995.

[13] D. Tullsen, Susan Eggers, Joel Emer, Henry Levy, Jack Lo,
Rebecca Stamm, “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading
Processor.” Proceedings of the 23rd Annual International
Symposium of Computer Architecture, May, 1996.

[14] S. Wilton and N. Jouppi, “An Enhanced Access and Cycle
Time Model for On-Chip Caches.” Western Research
Laboratory Research Report 93/5.

[15] K.C. Yeager, “The MIPS R10000 superscalar
microprocessor”, IEEE Micro, April 1996.

