On the Stability of Temporal Data Reference Profiles

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way
Redmond, WA 98052
trishulc@microsoft.com

Abstract

Growing computer system complexity has made program
optimization based solely on static analyses increasingly dif-
ficult. Consequently, many code optimizations incorporate
information from program execution profiles. Most memory
system optimizations go further and rely primarily on pro-
files. This reliance on profiles makes off-line optimization
effectiveness dependent on profile stability across multiple
program runs. While code profiles such as basic block, edge,
and branch profiles, have been shown to satisfy this require-
ment, the stability of data reference profiles, especially tem-
poral data reference profiles that are necessary for cache-
level optimizations, has neither been studied nor established.

This paper shows that temporal data reference profiles
expressed in terms of hot data streams, which are data refer-
ence sequences that frequently repeat, are quite stable; an
encouraging result for memory optimization research. Most
hot data streams belong to one of two categories—those that
appear in multiple runs with their data elements referenced
in the same order, and those with the same set of elements
referenced in a different order—and this category member-
ship is extremely stable. In addition, the fraction of hot data
streams that belong to the first category is quite large.

1. Introduction

Computer systems continue to grow in complexity both at
the architectural and micro-architectural level. At the archi-
tectural level, multiple levels of high speed cache memories
result in variable data access times. At the micro-architec-
tural level, speculation and out-of-order execution have a
large impact on program performance. This increasing
machine complexity makes it harder to statically anticipate
and improve program performance.

To address this problem, many traditional code optimiza-
tions have evolved to incorporate profile information in the
optimization analysis. For example, profiles are used to
choose between several optimization plans based on the
expected run-time benefit [1, 2, 13, 23], or to specify the
optimization scope by directing procedure inlining [14] or
scheduling [15, 20].

While code optimizations use profiles to complement
static program analysis, most memory system optimizations
that attempt to improve a program’s data cache performance

by changing the data layout, rely primarily on profiles [4, 6,
7,9, 17, 26]. The success of many of these optimizations
depends on access to accurate, fine-grain temporal data ref-
erence information. Since static code analysis cannot pro-
vide this level of detail, these optimizations rely on temporal
data reference profiles. For example, both Calder et. al [4],
and Chilimbi and Larus [6], use the temporal relationship
graph (TRG) [12], which approximates a temporal data ref-
erence profile by maintaining weighted edges between data
references that occur within a pre-selected reference dis-
tance.

This reliance on profiles makes the effectiveness of off-
line optimizations, especially memory system optimizations,
dependent on profile stability across multiple runs of the
same program with different inputs. The stability of code
profiles, such as procedure, basic block, edge, and branch
profiles, has been demonstrated [11, 27]. On the other hand,
the stability of data reference profiles, especially temporal
data reference profiles which are necessary for cache-level
optimizations, has neither been studied nor established. This
is particularly unfortunate since data layout optimizations
that target cache performance rely almost entirely on some
form of temporal data reference profile.

The paper attempts to address this problem by investigat-
ing the stability of temporal data reference profiles. In recent
research, Chilimbi describes a technique for efficiently com-
puting hot data streams, which are sequences of data refer-
ences that frequently repeat, from a program’s data reference
trace [8]. Since these hot data streams precisely capture the
temporal profile information needed by cache-level optimi-
zations, we use them to represent a program’s temporal data
reference profile. We “name” each of these hot data streams
by their access signature, which is an ordered list of the load/
store PCs that generate the hot data stream references. This
naming permits comparison of hot data streams across dif-
ferent program runs, despite changes in the addresses of the
data objects referenced.

Our experimental analysis of hot data stream profiles for
several of the SPECint2000 benchmarks, boxsim, a state-of-
the-art graphics application [5], and espresso, a heap-inten-
sive boolean minimization program, indicate that these pro-
files are quite stable across different program runs with the
relative contributions of different hot data streams to the

overall profile varying by only small amounts. Most impor-
tant (i.e., very “hot”) hot data streams belong to one of two
categories—those that occur in different program runs with
the same order of data element references, and those that
appear in different runs with the same set of data elements
referenced in a different order—and this category member-
ship is highly stable. In addition, for hot data stream sizes of
up to twenty elements (sufficiently long for cache-level
optimizations), the fraction of important hot data streams
that occur in different runs with data elements referenced in
the same order is quite large. These are encouraging results
for off-line cache-level optimizations that depend on such
temporal data reference profiles. Finally, for optimizations
where the order of data stream references is important, com-
bined profiles from multiple training runs outperform indi-
vidual train profiles by a small amount. On the other hand, if
the optimization does not rely on the order of data stream
references, then any individual train profile performs as well
as a combined train profile.

The rest of the paper is organized as follows. Section 2
surveys the different metrics used to compare profiles and
motivates our choice of comparison function for temporal
data reference profiles. Section 3 describes our representa-
tion of a program’s temporal data reference profile and dis-
cusses how these profiles may be compared across different
program runs despite changes in data object addresses. Sec-
tion 4 presents experimental results that demonstrate the sta-
bility of temporal data reference profiles.

2. Comparing Profiles

The literature discusses several methods for comparing
profiles [3, 10, 11, 18, 24, 27]. While some of the compari-
son functions described are abstract and can be used for
comparing various types of profiles, they have been prima-
rily applied to code profiles. Calder et al. compare branch
profiles with a coverage function that they define as the per-
centage of branches from a program run that were also exe-
cuted during a training run [3]. Fisher and Freudenberger
combine branch direction predictability with branch density
to compare branch profiles [11]. Wall uses a key matching
and weight matching metric to compare the top n elements
of two profiles [27]. Kistler and Franz treat an n item profile
as a vector in N-dimensional space and define a similarity
metric that computes a measure of the geometric angle
between the two profile vectors [18]. They use this similar-
ity metric in the context of a dynamic optimization system
to decide when program behavior has changed sufficiently
to warrant reoptimization. Savari and Young treat a fre-
quency profile as a probability distribution and compute the
relative entropy of the two probability distributions, which
is a measure of the inefficiency of assuming that the distri-
bution is the train profile when it actually is the test profile
[24]. Feller uses an overlap percentage metric to compare
value profiles [10]. The overlap for a profile event is the

Table 1: Example profiles

Profile | Event 1 | Event 2 | Event 3 | Event 4
P1 250 250 250 250
P2 1500 500 10 0
P3 300 150 10 0
P4 0 0 400 450
P5 400 500 600 0

minimum of its percentage contribution to the test and train
profile. The overlap percentage for two profiles is the sum
of these overlaps for all profile events. For example using
the data in Table 1, Overlap(pl, p2) = min(25, 74.6) +
min(25, 24.9) + min(25, 0.5) + min(25, 0) = 50.4.

We use the example profiles shown in Table 1, which are
taken from [24], to motivate our choice of comparison func-
tion for computing the stability of temporal data reference
profiles. We applied Calder et al.’s static and dynamic cov-
erage metric, Kistler and Franz’s similarity metric, Savari
and Young’s relative entropy metric, and Feller’s overlap
percentage metric to the example profiles. The results are
shown in Table 2. All comparison metrics agree on the best
train-test profile combination. Not surprisingly, static and
dynamic coverage, which were devised to compare branch
profiles, do a poor job of distinguishing between the pro-
files. The other three comparison functions mostly seem to
be in agreement. Relative entropy and overlap percentage
always agree on the relative ordering of the different train-
test profile combinations. Similarity and relative entropy are
fairly expensive to compute. On the other hand, overlap per-
centage is simple to compute and intuitively appears to be
the most satisfactory. Hence, we use overlap percentage for
comparing temporal data reference profiles.

3. Representing Temporal Data Reference
Profiles

This section describes our representation of a program’s
temporal data reference profile. It discusses comparing data
reference profiles across multiple program runs despite
changes in the addresses of the data objects referenced.

3.1 Hot Data Streams
In recent research, Chilimbi describes a compact repre-

sentation of a program’s data reference behavior that per-
mits precise temporal data reference profiles to be computed
efficiently [8]. The process is summarized in Figure 1. He
uses an incremental, linear-time compression algorithm
called SEQUITUR [21, 22] to generate a context-free gram-
mar from an input data reference trace. This context-free
grammar produces a single string, which is the data refer-

Table 2: Comparing profiles using different metrics.

Test profile | Train profile Cg\t/aelt'l;ge gg’\l/]:rlzéce Similarity lézlt?g;; Overlap
P1 P2 0.75 0.75 0.64 25.43 50
P3 0.75 0.75 0.69 24.85 52
P4 05 05 0.71 48.33 50
P5 0.75 0.75 0.86 24.12 75
P2 P1 1 1 0.64 115 50
P3 1 1 0.99 0.04 90
P4 0.33 0.01 0 98.31 0
P5 1 1 0.62 0.97 52
P3 P1 1 1 0.69 0.95 52
P2 1 1 0.99 0.05 90
P4 0.33 0.02 0.02 96.47 2
P5 1 1 0.68 0.74 62
P4 P1 1 1 071 1 50
P2 05 0.42 0 55.36 0
P3 05 0.42 0.02 54.36 2
P5 05 0.42 0.45 52.38 40
P5 P1 1 1 0.86 0.43 75
P2 1 1 0.62 2.28 52
P3 1 1 0.68 1.35 62
P4 0.33 0.4 0.45 58.66 40

ence trace. The grammar can be represented as a DAG, as
shown in Figure 1. The DAG representation, called Whole
Program Streams (WPS), can be efficiently analyzed (i.e., in
linear time) to discover hot data streams, which are fre-
quently occurring data reference sequences. The hot data
stream detection algorithm accepts three parameters—the
minimum hot data stream length, the maximum hot data
stream length, and the threshold (product of data stream
length and number of stream repetitions in the reference
trace) above which a data stream is deemed “hot”. The min-
imum hot data stream length is set at 2, and the maximum

S ->BABB

A->bc
abchcabcabe |[—® SEQUITUR |—®

Data
reference trace

Entry

3
i

Stream
Flow

Greon [@ | o

(SFG)

B >aA
Data reference grammar

hot data stream length is set at 100, since studies of several
programs yielded extremely few hot data streams of longer
length [8]. The “heat” threshold is set such that the resulting
hot data streams account for 90% of all data references (see
[8] for details), and thus are representative of the program’s
data reference behavior. Finally, these hot data streams can
be combined with the WPS representation to construct a
Stream Flow Graph (SFG) as shown in Figure 1. The nodes
of the SFG are hot data streams and weighted directed
edges, <src,dest>, indicate the number of times an access to
hot data stream src is followed by an access to hot data

S
/i Hot data
— A v v—P> stream_
analysis
B
Whole program

streams (WPS)
a b ¢
Graph

—_ a
Summertzation
C

Hot data streams

-

Figure 1. Temporal data reference representations and abstractions.

Heat Access signature Heat

<pC;, pej, pey.>: 1,576,425

pc;: load a Hot data stream
<<pg;, a>,<pc;,b>,<pc,,c>>: 1,576,425
. — I J
pCj:store b
pcy:load ¢ Hot data stream profile

Access signature profile

Figure 2. Access signature profile.

stream dest. The hot data streams and the SFG capture tem-
poral relationships that are potentially more precise than the
TRG since they are not determined by an arbitrarily selected
temporal reference window size. In addition, the hot data
streams represent a compact summary of a program’s tem-
poral data reference relationships since these account for
90% of all data references. For these reasons, we select a
program’s hot data stream profile, which consists of a list of
hot data streams along with their respective “heat” values, to
represent its temporal data reference profile. Each element
of a hot data stream is a <PC, data object> pair, where the
PC corresponds to the instruction that references the data
object. Global data objects are represented by their address,
whereas heap objects are represented by a <start address,
allocation_time> pair, where start_address corresponds to
the beginning of the chunk of heap memory allocated for the
object, and allocation_time is the value of a global counter
that is incremented after each heap allocation (Stack refer-
ences are filtered out prior to constructing the context-free
grammar from the trace since these typically have good ref-
erence locality and are rarely the focus of data locality opti-
mizations).

3.2 Naming Hot Data Streams
The hot data stream profile described in the previous sec-

tion cannot be compared across multiple program runs since
data object addresses change from one run to another. One
possible solution to this problem and the approach taken in
this paper is to compare the load/store instructions that gen-
erate the hot data stream references instead. In other words,
for comparison purposes, we represent a hot data stream by
its access signature, which is an ordered list of instruction
PCs that reference the hot data stream objects (see Figure 2).
While this naming scheme may introduce aliases, where the
same access signature corresponds to multiple hot data
streams, any off-line data locality optimization cannot
expect access to more precise hot data stream information.

4. Experimental Evaluation

This section investigates the stability of temporal data
reference profiles using several benchmarks that were run
with different input data sets. Further experiments explore
the differences between the best and worst training profiles
and consider the effect of combining different training pro-
files to synthesize a single representative train profile.
Finally, we present preliminary data that examines the effec-

tiveness of train profiles in driving a hot data stream-based
prefetching optimization.

4.1 Experimental Methodology
The programs used in this study include several of the

SPECint2000 benchmarks, boxsim, a state-of-the-art graph-
ics application [5], and espresso, a heap-intensive boolean
minimization program. The benchmarks (and the standard
libraries) were instrumented with Microsoft’s Vulcan tool to
produce a data address trace along with information about
heap allocations. Vulcan is an executable instrumentation
system similar to ATOM and EEL [19, 25]. The benchmarks
were run with a minimum of three different input data sets
as described in Table 3. 253.perlbmk’s train inputs were
scaled to generate a smaller data reference trace. Our choice
of benchmarks was influenced by the availability of multi-
ple input data sets that generated data reference traces on the
order of a few gigabytes. Stack references were filtered out
and do not appear in the trace. The heap allocation informa-
tion was processed to build a map of heap objects. A heap
object is a <start address, allocation time> pair as
described earlier, where allocation_time is a global counter
that is incremented after each allocation. We used this nam-
ing scheme to achieve maximum discrimination between
heap objects. Heap addresses in the trace were replaced by
their corresponding heap object name. The abstracted data
reference trace was fed to SEQUITUR, which produced a
context-free grammar. The DAG representation of this
grammar, called Whole Program Streams (WPS), was ana-
lyzed to identify hot data streams (see Figure 1). For each
input data set, eleven hot data stream profiles were col-
lected. These hot data stream profiles differed in the maxi-
mum hot data stream size permitted (minimum size was set
to 2 in all cases), which was varied from 5, 10, 20,..., 100.
The hot data stream profiles were computed such that in
each case the hot data stream references represented 90% of
all program data references. Each of these hot data streams,
which were represented by their load/store PC access signa-
ture, were written to a file along with their computed “heat”
(product of number of stream data references and stream
repetition frequency). These hot data stream access signa-
ture profiles were used to investigate the stability of the pro-
gram’s temporal data reference profiles.

4.2 Comparing Temporal Data Reference Profiles
Figure 3 illustrates using the overlap percentage metric to

Table 3: Benchmarks and input data sets.

Benchmark Description Inputs
175.vpr Performs placement and routing in Input 1: Place and route from SPEC test input
FPGAs (SPEC 2000) Input 2: Place and route from modified SPEC test input
Input 3: Place and route from modified SPEC test input
186.crafty Chess playing program (SPEC 2000) Input 1: game 1 from SPEC test input
Input 2: game 2 from SPEC test input
Input 3: game 3 from SPEC test input
252.eon Probabilistic ray tracer (SPEC 2000) Input 1: chair.cook from SPEC test input
Input 2: chair.kajiya from SPEC test input
Input 3: chair.rushmeier from SPEC test input
Input 4: chair.cook from SPEC train input
253.perlbmk |Interpreter for the Perl scripting language |Input 1: modified perfect from SPEC train input
(SPEC 2000) Input 2: modified scrabbl from SPEC train input
Input 3: modified diffmail from SPEC train input
boxedsim Event-driven simulation of spheres Input 1: 2 balls simulated for 100 msec
bouncing in a box [5] Input 2: 4 balls simulated for 300 msec
Input 3: 7 balls simulated for 500 msec
espresso Performs boolean function minimization |Input 1: x2dn
Input 2: opa
Input 3: ti

compare hot data stream profiles through their access signa-
tures. As discussed, eleven different temporal reference pro-
files (corresponding to increasing limits on the maximum
size of hot data streams) were gathered for each benchmark
input data set. The overlap percentage for each data point
reported in the graph shown in Figure 3 represents the aver-
age of all possible train-test permutations for the different
input data sets, excluding using the same data set as the test
and train profile. The term exact overlap is used to indicate
that access signatures from two different profiles were con-
sidered to represent the same profiled event only if they
were identical in terms of both the load/store PCs and the
order of these PCs. This metric is most relevant to optimiza-
tions such as prefetching, for which the order of data stream
references is important. With this comparison metric, box-
sim’s profiles are the most stable and 252.eon the least. Not
surprisingly, the graph shows that as the maximum hot data
stream size is increased, the exact overlap between different
profiles decreases as longer streams are less likely to have
access signatures that match exactly. For certain programs,
such as 175.vpr and 252.eon, the dropoff is fairly pro-
nounced, whereas for others it is more gradual. Most of the
dropoff occurs as the maximum stream length is increased
from 5 to 40, with little additional dropoff occurring as the
stream length is increased from 40 to 100. Closer examina-

tion of the profile data revealed that this is because longer
hot data streams do not contribute substantially to the over-
all profile “heat”.

We wanted to estimate the impact of access signature
load/store PC order on matching hot data streams across dif-
ferent program runs. To do this, we ignored access signature
load/store PC order and treated access signatures as sets for
matching purposes. We called this set overlap and the
results are shown in Figure 4. This metric is most relevant to
data layout optimizations such as clustering, that do not rely
on the order of data stream element references. The overlap
percentage metric is affected if high frequency events do not
appear in both the test and train profiles or if the relative
weight of events is significantly different in the test and
train profile. Figure 4 confirms that the relative contribution
of different hot data streams to the overall profile is
extremely stable (especially for hot data streams of length 2
to 20) across the different profiles. In addition, comparison
with Figure 3 indicates that most important hot data streams
match (for e.g., see 252.eon) if the access signature load/
store PC order is ignored. Further, the decrease in overlap as
longer hot data streams are included in the temporal profiles
(maximum stream size is increased from 5 to 40) is much
less significant when using set overlap as the comparison
metric. With this comparison metric, 186.crafty and boxsim

—e—boxsim —m—eon —a— crafty

espresso —x— \vpr —=— perlbmk

100

Exact Overlap

0 T T
0 20 40

60 80 100 120

Maximum stream size

Figure 3. Exact overlap comparison of hot data stream profiles.

have the most stable profiles and espresso the least. In addi-
tion, the difference between the most and least stable pro-
files is much less pronounced than the corresponding
difference in Figure 3.

From Figures 3 and 4 it appears that a large fraction of
the most important hot data streams have their data elements
referenced in the same order across different program runs
(especially for streams of length 2 to 20), while the rest have
their elements referenced in a different order. Hence, it
appears reasonable to investigate a comparison metric

where access signatures are first matched exactly and set
matching is used for the remaining unmatched access signa-
tures. We call this hybrid overlap and the results are shown
in Figure 5. The impact of hot data stream size on profile
overlap is smaller than in the case of exact and set overlap.
With this comparison metric, 175.vpr has the most stable
profile, and espresso the least, just as with the set overlap
metric. However, boxsim’s profile appears relatively less
stable than it did with the set overlap metric.

‘ —e—boxsim —m—eon —a—crafty

espresso —x—\vpr —=—perlbmk ‘

100 -
90 w ———3
80 g

70

60

50

40
30

Set Overlap

20

10
0 ‘ T

0 20 40

Maximum stream size

60 80 100 120

Figure 4. Set overlap comparison of hot data stream profiles.

—e—boxsim —m—eon —a— crafty

espresso —x— \vpr —=— perlbmk

100

90 +

80

70

60
50

40

Hybrid Overlap

30
20

10

0 T T
0 20 40

Maximum stream size

60 80 100 120

Figure 5. Hybrid overlap comparison of hot data stream profiles.

4.3 Combining Temporal Data Reference Profiles
The next set of experiments examine the effect of com-

bining multiple train profiles and evaluating the resulting
synthesized profile. Fisher and Freudenberger tried three
different strategies—unscaled, scaled, and polling—for
combining branch profiles [11]. Scaled normalizes the exe-
cution profiles to give each data set equal total weight.
Unscaled simply adds the execution counts of the same
event in different profiles, giving more weight to longer run-
ning profiles. Polling, which gives one vote on branch direc-
tion to each profile, is not applicable to temporal data
reference profiles. They reported that polling performed
poorly and that scaled and unscaled were on average indis-
tinguishably close. We used both the scaled and unscaled
strategies to combine our temporal data reference profiles

(we used exact matching on access signatures to generate
the combined profile), but report results only for scaled
since it was consistently better that unscaled, albeit by a
very small amount (1-3% on average)

For each of the three different comparison strategies—
exact, set, and hybrid—we report results for temporal data
reference profiles where the hot data streams were limited to
a maximum size of twenty data elements. We compute six
data points for each benchmark. The first three data points
measure the average, best, and worst overlap between indi-
vidual train profiles and a test profile, excluding using the
same profile as train and test. The next three data points
measure the average, best, and worst overlap between
scaled train profiles and individual test profiles. Concretely,
if a benchmark has four profiles: p1, p2, p3, p4. Then scaled

@ Average B Best O0Worst O Scaled-avrg B Scaled-best @ Scaled-worst

=
o
o

(00]
o
|

A O
o O
[

Exact Overlap
N
o

o
|

Figure 6. Exact overlap profile comparison (max. hot data stream size = 20).

M Average B Best O0Worst O Scaled-avrg B Scaled-best @ Scaled-worst

100 -
E‘ 80 — —
© 60 H — —
>
?_ 40 — —
3 20 — —
0 .
P ©

o D g
2 Q
&

2
&q
@

&

N
%2
N

Figure 7. Set overlap profile comparison (max. hot data stream size = 20).

profiles plp2p3, plp2p4, plp3p4, p2p3p4 were computed
and used as train profiles for p4, p3, p2, and p1 respectively.

The results for exact overlap comparison are shown in
Figure 6. Scaled profiles are on average slightly better than
individual profiles by around 4%. In addition, the difference
between the best and worst individual train profiles while
not always insignificant (18-20% for espresso, boxsim,
253.perlbmk), is much smaller than the difference reported
for branch profiles by Fisher and Freudenberger [11]. Using
scaled train profiles slightly reduces this variation. The
average profile overlap is around 60% when using scaled
train profiles. This suggests that a large fraction of impor-
tant hot data streams repeat across runs with the same data
element reference order. Closer examination of the profile
data indicates that these hot data streams that exactly match
are highly stable, with roughly 95% of these streams identi-
cal across all the different train profiles.

Figure 7 examines the effect of using set overlap to com-

pare profiles. The graph indicates consistently high overlaps
(over 90% in all cases), irrespective of whether individual
train profiles or scaled train profiles are used. In addition,
the differences between the best and worst profiles are neg-
ligible. This suggests that for optimizations where the order
of elements in a data stream is not important, practically any
train profile can be used to guide the optimization. Compar-
ing this graph with Figure 6 suggests that almost all the
important hot data streams match across different program
runs if the data element reference order within a stream is
ignored.

Finally, Figure 8 shows a similarly plotted graph with
hybrid overlap as the comparison metric. Again, there is lit-
tle difference on average between using individual train pro-
files or scaled train profiles. In addition, the differences
between the best and worst train profiles are around 10% on
average, which is a smaller variation than in the case of the
exact overlap metric but a larger variation than observed

M@ Average B Best O0Worst O Scaled-avrg B Scaled-best @ Scaled-worst

H
0 O
o o
|

IN
o
|

Hybrid Overlap
N (@]
o o

o
|

Figure 8. Hybrid overlap profile comparison (max. hot data stream size = 20).

[Ideal prefetching

I Expected prefetching

L

® 100

g 80

£ 60

2 40 -

§ 20 |

s O- :

N

% 9\((\ Q,oo \{b"@ "960
£ o~\~ QO &
- Q :'QQ
[e] <

=

Figure 9. Impact on prefetching optimization.

with the set overlap metric.

4.4 Tmpact on Optimization
The previous experiments compared and analyzed hot

data stream profiles from different runs of a program. While
the results appear encouraging, especially for hot data
streams that are smaller than twenty elements, the true test
is to explore the effectiveness of using a train profile to
drive an optimization.

We attempt to address this question by computing the
potential impact on cache miss rate of a prefetching scheme
based on hot data streams (we ignore misses that occur
when the data is prefetched, since these do not affect access
latency if the prefetch is scheduled sufficiently in advance).
While the details of this prefetching scheme is beyond the
scope of this paper, we briefly sketch how it works. It uses
prefetch arrays [16], and populates these arrays with point-
ers to hot data stream elements at runtime. All the load/store
PCs that are associated with any hot data stream are instru-
mented, and load/store PCs that correspond to the start of
any hot data stream have a prefetch array associated with
them. When the program executes any load/store instruction
that corresponds to the start of any hot data stream, the asso-
ciated set of prefetch arrays (possibly more than one since
multiple hot data streams may share the same start PC) are
examined and if none of them matches the current reference,
a fresh array is allocated (or an existing array is reused).
Subsequent references up to any load/store PC that ends a
hot data stream are recorded in this array. If on the other
hand a unique match is found, the remaining array elements
are prefetched. If multiple prefetch arrays match, subse-
quent references are used to distinguish between the arrays
until a unique match is found, or a predetermined limit is
exceeded. Saturating counters are used as a confidence
mechanism to avoid prefetching cold addresses that alias to
the same set of load/store PCs.

We simulated the effect of this prefetching scheme on
cache miss rate and Figure 9 shows preliminary results for
an 8K fully-associative cache with 64 byte blocks (we
scaled the cache size since we did not use the SPEC bench-

mark’s ref inputs). All miss rates are normalized with
respect to the base cache miss rate. The Ideal prefetching
bar was computed using the test input to generate its train
profile. The Expected prefetching bar was computed using a
combined scaled profile that did not include the test input
profile. Since the optimization depends on the hot data
stream element reference order to populate and use the
prefetch arrays, only those hot data streams that exactly
matched across all the individual train profiles used to syn-
thesize the combined profile, had their load/store PCs
instrumented. Most of the difference in results is attributable
to this decision, since the Ideal prefetching scenario was not
limited in this manner and could prefetch all hot data
streams. Nevertheless, using the combined train profile still
produced significant cache miss rate improvements.

S. Conclusions

This paper investigates the stability of temporal data ref-
erence profiles. We use hot data streams, which are
sequences of data references that frequently repeat, to repre-
sent a program’s temporal data reference profile. We
“name” each of these hot data streams by their access signa-
ture, which is an ordered list of load/store PCs that generate
the hot data stream references. This permits comparison of
hot data streams across different program runs, despite
changes in the addresses of the data objects referenced.

Experimental analysis of hot data stream profiles for sev-
eral benchmarks indicate that these profiles are fairly stable
across different program runs with the relative contributions
of different hot data streams to the overall profile varying by
only small amounts. Most important hot data streams belong
to one of two categories—those that appear in different pro-
gram runs with the same order of data element references,
and those that appear in different runs with the same set of
data elements referenced in a different order—and this cate-
gory membership is highly predictable. In addition, for hot
data stream sizes of up to twenty elements (sufficiently long
for cache-level optimizations), the fraction of important hot
data streams that appear in different runs with the same
order of data element references is fairly large. These are

encouraging results for off-line cache-level optimizations
that depend on such temporal data reference profiles.
Finally, for optimizations where the order of data stream ref-
erences is important, combined train profiles should outper-
form individual train profiles by a small amount. On the
other hand, for optimizations that do not rely on data stream
reference order, any individual train profile should perform
as well as a combined train profile.

6. REFERENCES

(1]

(2]

(3]

4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

R. Bodik, R. Gupta, and M. L. Soffa. “Complete Removal
of Redundant Expressions.” In Proceedings of the ACM
SIGPLAN’98 Conference on Programming Language De-
sign and Implementation, June 1998.

R. Bodik, R. Gupta, and M. L. Soffa. “Load-Reuse Analy-
sis: Design and Evaluation.” In Proceedings of the ACM
SIGPLAN’99 Conference on Programming Language De-
sign and Implementation, May 1999.

B. Calder, D. Grunwald, and A. Srivastava. “The predict-
ability of branches in libraries.” In Digital WRL Technical
Report 95/6, Oct. 1995.

B. Calder, C. Krintz, S. John, and T. Austin. “Cache-con-
scious data placement.” In Proceedings of the Eighth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIII), pages 139-149, Oct. 1998.

S. Chenney. “Controllable and scalable simulation for ani-
mation.” PhD. thesis, University of California at Berkeley,
2000.

T. M. Chilimbi, and J. R. Larus. “Using generational gar-
bage collection to implement cache-conscious data place-
ment.” In Proceedings of the 1998 International
Symposium on Memory Management, Oct. 1998.

T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-con-
scious structure definition.” In Proceedings of the ACM
SIGPLAN’99 Conference on Programming Language De-
sign and Implementation, May 1999.

T. M. Chilimbi. “Efficient representations and abstractions
for quantifying and exploiting data reference locality.” To
appear in Proceedings of the ACM SIGPLAN’01 Confer-
ence on Programming Language Design and Implementa-
tion, June 2001.

C. Ding and K Kennedy. “Improving cache performance in
dynamic applications through data and computation reorga-
nization at run time.” In Proceedings of the ACM SIG-
PLAN’99 Conference on Programming Language Design
and Implementation, pages 229-241, May 1999.

P. T. Feller. “Value profiling for instructions and memory
locations.” M.S. thesis CS98-581, University of California
at San Diego, April 1998.

J. A. Fisher and S. M. Freudenberger. “Predicting condi-
tional branch directions from previous runs of a program.”
In Proceedings of the Fifth International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems (ASPLOS V), pages 85-95, Oct. 1992,

N. Gloy, T. Blackwell, M. D. Smith, and B. Calder “Proce-
dure placement using temporal ordering information.” In
Proceedings of the 30th Annual ACM/IEEE International

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Symposium on Microarchitecture, 1997.

R. Gupta, D. A. Berson, and J. Z. Fang. “‘Path profile guided
partial dead code elimination using predication.” In Pro-
ceedings of the International Conference on Parallel Archi-
tecture and Compilation Techniques (PACT), 1997.

A. M. Holler “Optimization for a superscalar out-of-order
machine.” In Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, 1996.

W. Hwu et al. “The Superblock: An effective technique for
VLIW and superscalar compilation.” In Journal of Super-
computing, Kluwer Academic Publishers, pages 229-248,
1993.

M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching
technique for irregular accesses to linked data structures.”
In Symposium on High-Performance Computer Architec-
ture, Jan. 2000.

T. Kistler and M. Franz. “Automated record layout for dy-
namic data structures.” In Department of Information and
Computer Science, University of California at Irvine, Tech-
nical Report 98-22, May 1998.

T. Kistler and M. Franz. “Computing the similarity of pro-
filing data.” In Workshop on Profile and Feedback-Direct-
ed Optimization, Oct. 1998.

J. R. Larus and E. Schnarr. “EEL: Machine-Independent
Executable Editing.” In Proceedings of the ACM SIG-
PLAN’95 Conference on Programming Language Design
and Implementation, pages 291-300, 1995.

S. A. Mahlke, D. C. Lin, W. Y. Chen, and R. E. Hank “Ef-
fective compiler support for predicated execution using the
hyperblock.” In Proceedings of the 25th Annual ACM/IEEE
International Symposium on Microarchitecture, 1992.

C. G. Nevill-Manning and I. H. Witten. “Compression and
explanation using hierarchical grammars.” In The Comput-
er Journal, vol. 40, pages 103-116, 1997.

C. G. Nevill-Manning and I. H. Witten. “Linear-time, incre-
mental hierarchy inference for compression.” In Proceed-
ings of the Data Compression Conference (DCC’97), pages
3-11, 1997.

G. Ramalingam. “Data flow frequency analysis.” In Pro-
ceedings of the ACM SIGPLAN’96 Conference on Pro-
gramming Language Design and Implementation, May
1996.

S. Savari and C. Young. “Comparing and combining pro-
files.” In Workshop on Profile and Feedback-Directed Op-
timization, Nov. 1999.

A. Srivastava and A. Eustace. “ATOM: A system for build-
ing customized program analysis tools.” In Proceedings of
the ACM SIGPLAN’94 Conference on Programming Lan-
guage Design and Implementation, pages 196-205, May
1994.

D. Truong, F. Bodin, and A. Seznec. “Improving cache be-
havior of dynamically allocated data structures.” In Pro-
ceedings of the International Conference on Parallel
Architecture and Compilation Techniques (PACT), 1998.
D. Wall. “Predicting program behavior using real or esti-
mated profiles.” In Proceedings of the ACM SIGPLAN’91
Conference on Programming Language Design and Imple-
mentation, pages 59-70, June 1991.

