
Implementation and Evaluation of the Complex Streamed Instruction Set

Ben Juurlink
�

Dmitri Tcheressiz
�

Stamatis Vassiliadis
�

Harry A.G. Wijshoff
�

�
Computer Engineering Laboratory

Delft University of Technology
Delft, The Netherlands

�
Leiden Institute of Advanced Computer Science

Leiden University
Leiden, The Netherlands

Abstract

An architectural paradigm designed to accelerate stream-
ing operations on mixed-width data is presented and eval-
uated. The described Complex Streamed Instruction (CSI)
set contains instructions that process data streams of arbi-
trary length. The number of bits or elements that will be
processed in parallel is, therefore, not visible to the pro-
grammer, so no recompilation is needed in order to benefit
from a wider datapath. CSI also eliminates many overhead
instructions (such as instructions needed for data alignment
and reorganization) often needed in applications utilizing
media ISA extensions such as MMX and VIS by replacing
them by a hardware mechanism. Simulation results using
several multimedia kernels demonstrate that CSI provides a
factor of up to 9.9 (4.0 on average) performance improve-
ment when compared to Sun’s VIS extension. For complete
applications, the performance gain is 9% to 36% with an
average of 20%.

1 Introduction

It is anticipated that multimedia applications such as
JPEG and MPEG coders/decoders will become dominant
workloads in the near future [7, 14]. Multimedia codes typ-
ically process small data types (for example, 8-bit pixels
or 16-bit audio samples) and thus are not well-suited for
common general-purpose systems which are optimized for
processing word-size data (32 or 64 bits). Many vendors
have, therefore, extended their instruction set architecture
(ISA) with instructions targeted to multimedia applications.
These instructions exploit SIMD parallelism at the subword
level, i.e., they operate concurrently on, e.g., eight bytes or
four halfwords packed in one 64-bit register. Examples of
such media ISA extension are MMX [21, 22], VIS [27],
MDMX [18], MAX [15, 16], and AltiVec [9].

Although it has been shown that these extensions im-
prove the performance of many multimedia applications
(see, e.g., [1, 19, 24]), they have several limitations. One is

that the number of bits or elements that are processed in par-
allel, which is equal to the multimedia register size, is visi-
ble to the programmer. This implies that when the width of
the SIMD datapath is increased in order to process more ele-
ments in parallel, either the ISA has to be changed implying
that existing codes have to be recompiled or rewritten, or the
issue width has to be increased. Another limitation is over-
head for data reorganization. This includes pack/unpack in-
structions and alignment-related instructions. Furthermore,
SIMD-style instructions are most effective if data is stored
consecutively. Multimedia applications, however, often op-
erate on sub-blocks of a large matrix, which implies that
there is a gap between consecutive rows.

In this paper we present and evaluate an ISA extension
called CSI (Complex Streamed Instructions) that addresses
these problems as well as several others. CSI instructions
process two-dimensional data streams. There is no archi-
tectural (i.e., programmer-visible) constraint on the length
of the streams. Instead, the hardware is responsible for di-
viding the streams into sections which are processed in par-
allel. CSI also eliminates the need for pack/unpack instruc-
tions, because conversion between different packed data
types (if required) is performed internally in hardware. Fur-
thermore, because streams are two-dimensional, loop over-
head instructions associated with updating of pointers and
branching are also avoided.

This paper is organized as follows. Section 2 describes
the limitations of current media ISA extensions and explains
how the CSI paradigm solves these problems. The CSI ISA
extension and its implementation are described in Section 3.
Section 4 describes the benchmarks, the modeled architec-
tures, and presents the experimental results. Related work is
discussed in Section 5, and concluding remarks and topics
for future research are given in Section 6.

2 Motivation

In this section we list some of the limitations of current me-
dia ISA extensions and describe how they are solved in the
CSI architecture.

Architectural Constraint on Section Size. All current
media ISA extensions as well as most vector architectures
have an architectural (i.e., programmer-visible) fixed sec-
tion size. For example, MMX and VIS instructions operate
on 64-bit registers which can be treated either as 8 bytes, 4
halfwords, or 2 words. Because of this, the section size ap-
pears explicitly in the code. This, however, means that if the
width of the SIMD datapath is increased in order to exploit
more parallelism, the ISA may have to be changed to reflect
this. This implies that (parts of) the application may have
to be recompiled or even rewritten in order to benefit from
the wider datapath. For example, if MMX would operate on
128-bit registers, existing MMX codes must be adapted.

Another way to increase parallelism is by increasing the
issue width so that more SIMD instructions can be pro-
cessed in parallel. However, it is generally accepted that
increasing the issue width requires a substantial amount of
hardware and may negatively affect the cycle time [10, 20].

In CSI these problems are avoided because CSI instruc-
tions process data streams of arbitrary length. The imple-
mentation is responsible for dividing the data streams into
sections which are processed in parallel. Therefore, the
number of elements that is processed in parallel does not
appear explicitly in the code.

Increasing Parallelism. A problem related to the previ-
ous is the following. Although it may be possible to in-
crease the width of the datapath and the register size, it may
not always be beneficial because many multimedia appli-
cations operate on sub-blocks of a large matrix (represent-
ing, e.g., an image), and the vector length in both directions
is rather short (typically 8 or 16 bytes). Consider, for ex-
ample, Figure 1 which shows a C-function taken from an
MPEG encoder. The rows of the pred and cur blocks are
not stored consecutively in memory. Consequently, as was
also observed in [6], the amount of parallelism that can be
exploited by a SIMD extension is restricted to a single row.
In order to be able to exploit more parallelism, CSI instruc-
tions operate on two-dimensional streams.

Minimizing Overhead. The execution of a multimedia
kernel typically consists of the following steps: (1) load
operand data into registers, (2) rearrange data so that
operand elements are stored consecutively, (3) convert data
from storage to computational format, (4) perform the ac-
tual computation, (5) convert the results to their storage for-
mat, (6) rearrange the results and, finally, (7) store them in
memory. ISA extensions like MMX and VIS have explicit
instructions to perform data conversion and rearrangement,
and, for example, [24] showed that on average, they con-
stitute 41% of the VIS instructions. In CSI this overhead
is eliminated by performing data conversion and rearrange-
ment implicitly in hardware and by pipelining it with the
actual computation. This is described in detail below.

static void add_pred(pred,cur,lx,blk)
unsigned char *pred, *cur;
int lx;
short *blk;
{

int i, j;

for (j=0; j<8; j++){
for (i=0; i<8; i++)

cur[i] = clp[blk[i] + pred[i]];
blk+= 8;
cur+= lx;
pred+= lx;

}
}

Figure 1. C code for saturating add.

a. Non-Unit Strides. SIMD extensions are most ef-
fective if the vector elements are stored consecutively, for
otherwise, they need to be reordered. In some multime-
dia applications, however, consecutive stream elements are
stored at a fixed but non-unit stride. This happens, for ex-
ample, in JPEG’s color conversion routine where the Red,
Green and Blue components are stored at a stride of 3. In
the upsampling/downsampling phases of JPEG, data is also
accessed with a non-unit stride. In CSI, consecutive stream
elements pertaining to the same row do not have to be stored
in consecutive memory location. Thus, we allow any stride
between two consecutive row elements, as well as between
consecutive rows. The hardware implementation is respon-
sible for aligning them properly. This is one of the differ-
ences with MOM [6], which allows an arbitrary stride be-
tween consecutive rows but requires a unit-stride between
consecutive row elements.

b. Computing with Different Formats. When we con-
sider Figure 1 again, we observe that one of the blocks con-
sists of 16-bit (short) elements, whereas the other consists
of 8-bit elements. When these two blocks are added using
SIMD instructions, the pred block must be unpacked (or
promoted) to a 16-bit format. Data promotion may also be
required when the input elements have the same size, be-
cause the result may not be representable by this format.
This incurs a performance penalty of at least a factor of 2,
due to the reduced parallelism and the overhead caused by
pack/unpack operations. Because of this, many media ISA
extensions have instructions that automatically saturate to
the smallest or largest value the data type can represent. (In
VIS, saturation is performed while packing.)

In CSI, these problems are resolved as follows. When
packing/unpacking is necessary because the input streams
have different formats (as in the example shown in Fig-
ure 1), it is performed internally in hardware. No special
opcodes are needed to specify that, for example, one of the
input streams consists of 16-bit elements and the other of 8-

bit elements, because a control register associated with each
stream specifies the element width. If packing/unpacking
is not required, the programmer can specify that saturation
arithmetic should be performed instead of “wrap-around
arithmetic” by setting a bit in another control register. This
is another difference with MOM [6], which can also per-
form saturation arithmetic, but which still requires pack-
ing/unpacking if the input streams have different formats.

c. Data Alignment and Loop Control. There are other
instructions besides packing and unpacking that contribute
to the overhead. This includes alignment-related and loop
control instructions. For example, VIS needs alignment
instructions if a vector is not stored at an 8-byte aligned
address. Loop control instructions are the instructions re-
quired for breaking the data stream into fixed-size sections
which are processed in parallel. This includes instructions
needed to advance the pointers to the next sections, in-
structions that compute the loop termination condition, and
branch instructions. In the CSI architecture, these functions
are also replaced by a hardware mechanism. The hardware
generates aligned addresses and is responsible for extract-
ing the bytes that belong to the data stream. Furthermore,
since CSI instructions process streams of arbitrary length,
no loop control instructions are needed.

Memory-to-Memory Operation. CSI is a memory-to-
memory architecture for two-dimensional streams. The de-
cision not to use registers for stream data was motivated by
the intention not to have an architectural constraint on the
section size, and by the observation that vector registers are
not always able to exploit data reuse in multimedia applica-
tions while caches are. For example, during the motion es-
timation phase of mpeg2encode the best matching block
is searched by comparing it with a number of candidates
in the reference frame. The new candidate block is usually
shifted just a few pixels from the previous one. Candidate
blocks, therefore, largely overlap. This results in high data
reuse (and L1 hit rate), but there is no obvious way to exploit
this using traditional vector registers. Another example can
be found in the JPEG decoder. There, data from a large
(several Kbytes) buffer flows in a pipelined fashion through
several kernels. There is not much data reuse within the
kernels themselves and the buffer is too large to be stored in
a vector register. The cache, on the other hand, is likely to
be large enough to store the buffer. We remark that when a
kernel performs several operations on each stream element,
one has to introduce temporaries to store intermediate re-
sults. However, we observed that writing and reading these
intermediate streams did not stress the memory bandwidth
because they have unit stride and usually were stored and
retrieved from the L1 cache without going to lower levels
of the memory hierarchy.

Base HStride

VStride

SizeS4.

Figure 2. Two-dimensional stream format.
Each box represents a byte. Filled boxes are
stream elements.

3 Architecture and Implementation

In this section we present the CSI multimedia ISA exten-
sion. A possible implementation is also described.

3.1 CSI Overview

CSI is a memory-to-memory architecture. Most CSI
instructions load two large data input streams from mem-
ory, operate on them element-wise, and write the resulting
stream back to memory. There is no architectural constraint
on the stream length. As illustrated in Figure 2, streams
are two-dimensional. Each stream consists of an arbitrary
number of rows, and the row elements are stored at a fixed
stride which will be referred to as HStride (short for hori-
zontal stride). There is also a fixed stride between consecu-
tive rows, which will be referred to as VStride.

Each stream is specified by a set of stream control regis-
ters (SCR-set), which consists of the following 32-bit regis-
ters, each of which is addressed by a number between 0 and
5.

0. Base. This register contains the starting or base ad-
dress of the stream. For example, if the matrix in Fig-
ure 2 is stored in row-major order and its base address
is 8000, the base address of the stream is 8018.

1. RLength. This register holds the number of stream el-
ements in a row (the number of elements belonging to
the stream, not the row length of the enveloping ma-
trix). In the example, RLength=4.

2. SLength. This register contains the stream length. In
the example illustrated in Figure 2, SLength=12.

3. HStride. The stride in bytes between consecutive
stream elements in a row.

4. VStride. The distance in bytes between consecutive
rows.

5. S4. This register consists of four fields: Size, Scale
factor, Sign and Saturate. The first field consists

31 34 2 1 09

unused

Scale factor
Saturate

Size
Sign

Figure 3. S4 register format

of two bits and specifies the size of the stream ele-
ments, where 00 corresponds to bytes, 01 half-words,
10 words, and 11 double-words. The Sign field is a
flag that specifies if the stream elements are signed or
unsigned values. The Saturate field is also a flag that
specifies if saturation or modular arithmetic should be
performed. If this bit is set and the result cannot be
represented by the number of bytes indicated by the
Size field, the result is clipped to the minimum or max-
imum value. If this bit is not set, the result simply
“wraps-around”. The function of the Scale factor field
is identical to the Scale factor field of the Graphics
Status Register of the VIS architecture [30]. It deter-
mines the number of bits by which the result is shifted
to the left before the least significant bits (LSBs) are
rounded and discarded. The number of bits discarded
depends on the size of the operands and the result. For
example, when packing from 16 to 8 bits, the 7 LSBs
are discarded. This mechanism allows to specify the
number of fractional bits. The format of the S4 regis-
ter is depicted in Figure 3.

The CSI instruction set is divided in two categories:

1. CSI arithmetic and logical instructions. These in-
structions have the following formats:

� op SCRSi, SCRSj, SCRSk
Such instructions process two data input streams
and produce a data output stream. The streams
are specified by the corresponding SCR-sets. Ex-
amples are pairwise addition, subtraction and
multiplication of two data streams.

� op SCRSi, SCRSj, GPRk
These instructions are similar to the previous
ones but the second operand is not a data stream
but a scalar value. An example of such an in-
struction is the multiplication of a data stream by
a scalar.

� op GPRi, SCRSj, SCRSk
These instructions process two input streams
and produce a scalar result. Two examples are
csi_sad and csi_dotprod, which compute
the sum of absolute differences and dot product
of two data streams, respectively.

2. CSI auxiliary instructions. These instructions set the
individual stream control registers.

� csi_mtscr SCRSi, j, GPRk
mtscr stands for move to stream control
register. This instruction loads SCR j
of SCR-set SCRSi with the contents of
the general purpose register GPRk. The
stream control registers are numbered as above.
For example, the base address of SCR-set
SCRS2 can be loaded from GPR4 using
csi_mtscr SCRS2, 0, GPR4.

� csi_mtscri SCRSi, j, imm
This instructions also loads a stream control reg-
ister but with an immediate value.

Note that since the element size and the Sign and Satu-
rate bits are set using control registers, the CSI ISA exten-
sion is quite compact and actually smaller than SIMD exten-
sions such as VIS and MMX. For example, seven MMX in-
structions padd[b,w,d] (add with wrap-around on [byte,
word, double-word]),padds[b,w] (add signed with satu-
ration) and paddus[b,w] (add unsigned with saturation)
correspond to just one CSI instruction csi_addwhich can
add streams of signed as well as unsigned bytes, halfwords
(words in Intel terminology) and words, and which also per-
forms saturation if the Saturate bit is set.

As an example, Figure 4 shows the CSI code for the
add_pred routine depicted in Figure 1. For each data
stream, 6 instructions are needed to set the control registers,
after which the csi_add instruction is triggered. These
18 instructions needed to set the SCRs might seem signif-
icant at first but mostly they are negligible for the follow-
ing reasons. First, these instructions are executed only once
and their number is still very small compared to the num-
ber of instructions that must be executed by a scalar pro-
cessor. In this example, 64 iterations (with about 10 scalar
instructions each, depending on the compiler) are replaced
by 18 instructions that manipulate the SCRs and a single
csi_add instruction. Second, in many cases, not all SCRs
have to be reset to initiate a new CSI instruction. For exam-
ple, the add_pred routine is executed on many different
blocks. This means that after all SCRs are set the first time,
only the base addresses have to be reset. The overhead is,
therefore, amortized over many instructions.

We remark that the structure of the CSI architecture al-
lows some powerful instructions to be constructed. For ex-
ample, the arithmetic average of two 8-bit pixel streams can
be calculated using the csi_add instruction by setting the
Scale factor field of the SCR-set corresponding to the desti-
nation stream to 6. So, the results of the csi_add instruc-
tion are shifted to the left by 6 bit positions, after which the
7 least significant bits are rounded and then discarded.

All CSI instructions can be interrupted during execution.
However, we first observe that arithmetic overflow does not
generate an exception, since either wrap-around or satura-
tion arithmetic is performed. Other exceptions, such as page

GPRi is denoted as $i
We assume pred=$4, curr=$5, lx=$6, blk=$7
Set SCRs for blk stream
csi_mtscr SCRS1,0,$7 # Base
csi_mtscri SCRS1,1,8 # RLength
csi_mtscri SCRS1,2,64 # SLength
csi_mtscri SCRS1,3,2 # HStride
csi_mtscri SCRS1,4,16 # VStride
#scale=0,saturate=0,sign=1,size=01(halfword)
So,constant to load in S4 is:
00101(base 2) = 5(base 10)
csi_mtscri SCR1,5,5 # S4

Set SCRs for pred stream
csi_mtscr SCRS2,0,$4 # Base
csi_mtscri SCRS2,1,8 # RLength
csi_mtscri SCRS2,2,64 # SLength
csi_mtscri SCRS2,3,1 # HStride
csi_mtscr SCRS2,4,$6 # VStride
scale=0, saturate=0, sign=0, size=00(byte)
So,constant to load in S4 is 00000=0
csi_mtscri SCRS2,5,0 # S4

Set SCRs for curr stream
csi_mtscr SCRS3,0,$5 # Base
csi_mtscri SCRS3,1,8 # RLength
csi_mtscri SCRS3,2,64 # SLength
csi_mtscri SCRS3,3,1 # HStride
csi_mtscr SCRS3,4,$6 # VStride
scale=0, saturate=1, sign=0, size=00(byte)
So,constant to load in S4 is 01000=8
csi_mtscri SCRS3,5,8 # S4
Trigger streamed operation csi_add
csi_add SCRS3,SCRS2,SCRS1

Figure 4. CSI code for the add pred routine.

faults, can be handled as in the IBM System/370 vector ar-
chitecture [2]. A stream interruption index is maintained
that indicates which stream elements are currently being
processed. If the instruction is interrupted, this internal reg-
ister marks the point that has been reached. If the instruction
is reissued, execution resumes from that point.

3.2 Implementation

In this section we describe the hardware implementa-
tion of the CSI architecture, which will be referred to as
the stream unit. The datapath of the experimental stream
unit is depicted in Figure 5. Its main hardware entities are
the stream control register sets (SCR-sets), the memory in-
terface unit, the pack and unpack units, one or more CSI
functional units which perform SIMD parallel operations,
and the accumulator ACC. For clarity, some of the paths
have been omitted. For example, one of the inputs of the
CSI functional units can be a general-purpose register or an

Stream Control Register Sets

HStride
VStride

S4RLength
SLength

CSI
MULT

CSI
ALU

setup
logic

output
register

pack

stream
output
buffer

adder

ACC

k-input
adder

registers
purpose
general

input
register 1

input
register 2

unpack unpack

stream
input

buffer 1

stream
input

buffer 2

Memory
Memory
Interface

Unit

Base

n n

2n 2n

2n x 2:1 MUX

3n

Figure 5. Datapath of the Stream Unit

immediate value, and there is also a path from the general-
purpose registers to the stream control registers.

The memory interface unit is responsible for transferring
data between the memory hierarchy and the stream buffers.
In addition, if the data is not stored consecutively, it must
also extract non-consecutive data from the cache and align
them in the proper order. Its operation will be described in
more detail below.

The unpack units convert stream data from storage for-
mat to computational format (if required). For this, they
use the values of the Size and Sign fields of the SCR S4.
For example, if one data input stream consists of unsigned
bytes and the other consists of signed halfwords, the first is
converted to 16-bit halfwords by padding with zeroes.

The CSI functional units perform subword parallel oper-
ations on the data contained in the input registers. Currently
two CSI units are used: one CSI MULT unit that performs
parallel multiplication and division, and one SIMD ALU
that performs parallel addition and subtraction as well as
the sum of absolute differences (SAD) operation. The setup
logic is also used in the computation of the SAD opera-
tion. Following the scheme presented in [28], it determines
the smallest of each pair of corresponding pixels contained
in the input registers, and controls the CSI ALU so that it
negates the smallest pixel of each pair. The size of the input
registers is � , where � is implementation dependent, and the
size of the output register is

� � so that no overflow occurs
during computation.

From the output register, data flows either to the stream
output buffer via the pack unit or to the accumulator. The
pack unit converts the data from computational format to

Memory
Interface
Unit

AGs EXTRACT INSERT

LQ SQ

Figure 6. Memory Interface Unit

storage format. It also performs truncation and saturation,
similar to the VIS pack instructions. For this, it uses Scale
factor, Sign, Saturate and Size fields of the S4 register cor-
responding to the output stream.

The accumulator is ��� bits wide. It is used in reduction
operations such as the SAD and DOTPROD. It enables the
accumulation of up to �
	����� products without having
to promote the operands to a larger format [18]. As men-
tioned, data promotion incurs a performance penalty due to
the reduced parallelism and due to the cycles needed for ex-
ecuting pack/unpack instructions. Note that the stream unit
performs data promotion only if the input streams have dif-
ferent formats, not when the result may become too large.
Finally, the adder between the accumulator and the register
file sums up the components contained in the accumulator.
The accumulator can contain either ��������� , ������� , �����
� ,
or ������� components.

Memory Interface Unit. We now describe the memory
interface unit (MIU). One important issue is the following:
should the MIU be connected to the level-1 (L1) cache, or
should it bypass the L1 cache and go directly to the L2
cache or even main memory? In this study we decided to
connect the MIU to a 3-ported (2 read , 1 write) L1 cache
for the following reasons. First, Ranganathan et al. [24]
observed that with realistic L1 cache sizes, multimedia ap-
plications achieve high hit rates. Our simulations support
this observation. For example, with a 32K direct-mapped
L1 data cache, all benchmarks exhibited hit rates over 99%.
Another motivation is that since the L1 cache is on-chip, it
will not be expensive to widen the path between the cache
and the stream unit, so that a whole cache block can be
brought to the stream unit in a single cycle. In the future,
however, we intend to look at other memory organizations.

The memory interface unit is depicted in Figure 6. It
consists of the following hardware entities: three address
generators (AGs), a load queue (LQ) and a store queue
(SQ), and extract and insert hardware.

The AGs generate the addresses of the cache blocks
that must be fetched. After a CSI instruction has been is-
sued, each AG aligns the Base address of its associated data
stream to cache block boundaries, and inserts the aligned
address into the load queue. Furthermore, with each LQ

entry, a mask of CBS bits is associated, where CBS is the
cache block size in bytes. This mask marks which bytes in
the cache block belong to the stream. It is computed based
on the values of the control registers HStride, VStride and
RLength, and the Size field of the S4 register. Each AG also
updates some internal control registers in order to compute
the address of the next block to fetch.

The load queue submits the load address to the cache
read port. When the data arrives, it sets the ready flag of the
corresponding entry. The store queue operates similarly.

The extract unit monitors the entry at the head of the LQ.
When the ready flag of this entry is set, it extracts the use-
ful bytes from it (based on the corresponding mask), and
places them consecutively in an input stream buffer. It op-
erates similar to a collapsing buffer [5]. The insert unit per-
forms the inverse operation, i.e., it “scatters” the stream el-
ements so that they are in their correct position, and places
the cache block in the store queue. The SQ then performs a
partial store, similarly to the VIS partial store instruction.

4 Evaluation

In order to evaluate the performance of the proposed
ISA, we simulated a superscalar processor without a multi-
media ISA extension, a superscalar processor with the VIS
extension, and a processor extended with CSI instructions.
We studied four benchmarks from the MediaBench [13]
test suite: mpeg2enc (MPEG-2 encoder), mpeg2dec
(MPEG-2 decoder), cjpeg (JPEG encoder), and djpeg
(JPEG decoder). These programs are representative of
video and image processing applications. For the MPEG
benchmarks, we used the test bitstream, which consists of
three ������������� frames. For the JPEG benchmarks, the rose
input was used, which is a � �"!#�$�%�"& pixel image.

4.1 Simulation Methodology and Tools

We used the sim-outorder simulator of the Sim-
pleScalar toolset (release 3.0) [3] to simulate a superscalar
processor without and with VIS or CSI extensions. This is
an execution-driven simulator that supports out-of-order is-
sue and execution. Its architecture (Portable ISA or PISA) is
derived from the MIPS-IV ISA [23]. CSI and VIS instruc-
tions were synthesized using annotations to instructions in
the assembly files. We used a corrected version of the Sim-
pleScalar memory model based on SDRAM specifications
given in [8].

To our knowledge, there is no compiler that generates
VIS code. We, therefore, had to write VIS (as well as CSI)
code ourselves, but used code from the VIS Software De-
veloper’s Kit (VSDK) when possible. We remark that DCT
routines are not available in the VSDK. They are avail-
able in the SUN mediaLib, but this library consists of bi-

Table 1. Processor configuration.
Clock rate 500MHz
Issue width 4
Register update unit size 16
Load-store queue size 8
Branch Prediction

Bimodal predictor size 2K
Branch target buffer size 2K
Return-address stack size 8

Functional unit types, number
and cycles (latency, recovery)

Integer ALU 4 (1/1)
Integer MULT 1
multiply (3/1)
divide (20/19)

Cache ports 2 (1/1)
Floating-point ALU 4 (2/2)
Floating-point MULT 1
FP multiply (4/1)
FP divide (12/12)
sqrt (24/24)

VIS adder 2 (1/1)
VIS multiplier 2
multiply and pdist (3/1)
other (1/1)

nary routines. The most time-consuming routines were first
identified by profiling. After that, the functions that con-
tained a substantial amount of data-level parallelism and
whose key computation could be replaced by VIS and CSI
instructions were rewritten manually. The loops were un-
rolled so that the loop bodies could be replaced by a set
of equivalent VIS instructions. The selected kernels are:
Add Block (MPEG2 frame reconstruction), Saturate
(saturation of 16-bit elements to 12-bit range in MPEG de-
coder), dist1 (sum of absolute differences for motion es-
timation), ycc rgb convert and rgb ycc convert
(color conversion between YCC and RGB color spaces in
JPEG), and h2v2 downsample (')(+* horizontal and ver-
tical downsampling of a color component in JPEG), and
idct (inverse discrete cosine transform).

4.2 Modeled Architecture

It is important to note that the baseline architecture is
SimpleScalar (i.e., PISA), not UltraSPARC. We have cho-
sen VIS instead of the MIPS media ISA extension MDMX
because, first, VIS is representative of many current me-
dia extensions [24], and, second, MDMX has no instruction
that computes the sum of absolute differences (SAD). The
SAD is used in motion estimation, which is the most time-
consuming part of the MPEG encoder. With MDMX one
should use the sum of squared differences [18] instead, but
this would have required to modify the benchmarks.

Table 2. Memory configuration.
Instruction cache ideal
Data caches

L1 line size 32 bytes
L1 associativity direct-mapped
L1 size 32 KB
L1 hit time 1 cycle
L2 line size 128 bytes
L2 associativity 2-way
L2 size 1 MB
L2 replacement LRU
L2 hit time 6 cycles

Main memory
type SDRAM
row access time 20 ns
row activate time 20ns
precharge time 20ns
bus frequency 100MHz
bus width 64bits

The base system is a 4-way superscalar processor with
out-of-order issue and execution based on the Register Up-
date Unit (RUU). The processor parameters are listed in
Table 1, and the parameters of the memory subsystem are
listed in Table 2. Because the benchmarks used in this study
have small instruction working sets, a perfect instruction
cache is assumed. VIS instructions operate on the floating-
point register file and have a latency of 1 cycle, except for
the pdist (which computes the SAD) and the packed mul-
tiply instructions, both of which have a latency of 3 cycles.
There are two VIS adders that perform partitioned add and
subtract, merge, expand and logical operations, and two VIS
multipliers that perform the partitioned multiplication, com-
pare, pack and pixel distance operations. This is modeled
after the UltraSPARC [27] with the following exceptions.
In the UltraSPARC, the alignaddr instruction cannot be
executed in parallel with other instructions [30] but this lim-
itation is not present in the architecture we modeled. Fur-
thermore, the UltraSPARC has only one 64-bit VIS multi-
plier. We assumed two because the width of the datapath
of the stream unit is assumed to be 128 bits. The degree
of parallelism of the VIS-enhanced and the CSI-enhanced
architectures are, therefore, comparable.

All sub-units (i.e., pack/unpack, extract/insert, CSI adder
etc.) of the stream unit require 1 cycle, except for the CSI
multiplier, which requires 3 cycles but is fully pipelined.
The datapath of the stream unit is 128 bits wide. So, the
CSI functional units process either 16 bytes, 8 halfwords,
4 words, or 2 double-words in parallel. The input registers
are therefore 128 bits wide, the output register 256 bits, and
the accumulator 384 bits (cf. Figure 5).

Because one CSI instruction can replace two embedded
loops, the requirements for the machine’s fetch, decode and
issue bandwidth will be greatly reduced. In order to evalu-

0

5

10

15

20

25

30

S
P

E
E

D
U

P

Add_Block

2−WAY 4−WAY
0

5

10

15

20

25

30
Saturate

2−WAY 4−WAY
0

5

10

15

20

25

30
dist1

2−WAY 4−WAY
0

2

4

6

8

10

12

14
ycc_rgb_convert

2−WAY 4−WAY

0

2

4

6

8

10

12

14

S
P

E
E

D
U

P

2−WAY 4−WAY

rgb_ycc_convert

0

2

4

6

8

10

12

14
h2v2_downsample

2−WAY 4−WAY
0

1

2

3

4

5
idct

2−WAY 4−WAY

scalar

VIS

CSI

Figure 7. Kernel-level speedups (w.r.t. the 2-way superscalar processor).

ate this effect, we also simulated a 2-way superscalar pro-
cessor in addition to a 4-way system.

Since VIS instructions are register-to-register and oper-
ate on the floating-point register file, they do not interfere
with the existing processor pipeline. CSI instructions are
memory-to-memory and require extra care. One must en-
sure that CSI instructions do not overlap with scalar mem-
ory instructions. We, therefore, took the following conser-
vative approach: when a CSI instruction is detected, the
pipeline is stalled until all memory instructions have com-
mitted. After that, the CSI instruction is issued and fetching
resumes when it has finished.

4.3 Experimental Results

In this section we present the speedups attained by the
two multimedia ISA extensions (VIS and CSI) considered.
Speedups will be given with respect to the 2-way system.
We first present results for several kernels from our bench-
marks. After that, we analyze how kernel-level speedup
translates to application speedup.

Figure 7 depicts the speedups attained for the seven ker-
nels selected from the benchmarks. When the issue width is
2, the VIS-enhanced architecture achieves a speedup of 1.4
to 5.9 with an average of 3.1, whereas the CSI-enhanced
architecture attains speedups ranging from 4.0 to 22.7 (12.3
on average). When the issue width is 4, the average speedup
(w.r.t. to the 2-way system) of the VIS-enhanced architec-
ture is 4.4 (2.3 to 7.2) and the average speedup of the CSI-
enhanced architecture is 15.0 (4.2 to 28.3). So, CSI clearly
outperforms VIS.

Especially on the Saturate kernel the CSI-enhanced
architecture performs much better than the architecture ex-
tended with VIS instructions. Whereas the VIS-enhanced
processor attains speedups of ,
- ."/ (2-way issue) and 01- 0
2

(4-way issue), the CSI-enhanced processor attains speedups
of ,%.3-4, and ,�51- 5 , respectively. The reason is that in this
kernel 16-bit values have to be clipped to a 12-bit range
and, simultaneously, the clipped values have to be accu-
mulated. Because CSI instructions have saturation to any
desired range as a feature (by setting the Saturate bit and
adjusting the Scale factor field of the S4 register), and be-
cause the accumulator accumulates all results, the body of
the Saturate kernel is essentially replaced by one in-
struction. In the VIS-enhanced architecture, saturation and
accumulation have to be performed explicitly in software.

It can be observed that the smallest performance im-
provement of the CSI-enhanced architecture over the VIS-
enhanced architecture occurs for the idct kernel. The rea-
son is that the VIS version is based on the scalar version,
which in turn is based on a highly optimized DSP algorithm
proposed in [4]. However, this DSP algorithm does not op-
erate on long vectors and can therefore not be efficiently
implemented using CSI instructions. The CSI version of
the idct is based on the standard definition of the IDCT as
two matrix multiplications. Thus, the CSI version of idct
executes many more operations than the VIS version, but
nevertheless a speedup is obtained.

The results for complete applications are depicted in
Figure 8. For a 2-way issue machine, the VIS-enhanced
architecture achieves speedups of 1.42 (on the djpeg
benchmark), 1.17 (cjpeg), 1.40 (mpeg2dec) and 1.93
(mpeg2enc), whereas the CSI-enhanced architecture at-
tains speedups of 1.94, 1.28, 1.70 and 2.28, respectively.
When the issue width is 4, the respective speedups are 2.08,
1.59, 2.13 and 2.37 for the VIS-enhanced processor, and
2.75, 1.74, 2.48 and 2.77 for the CSI-enhanced processor.
Of course, due to Amdahl’s Law, the speedups for complete
programs are less impressive than those for kernels. Nev-
ertheless, when the issue width is two, the CSI-enhanced

0

0.5

1

1.5

2

2.5

3

S
P

E
E

D
U

P

djpeg

2−WAY 4−WAY
0

0.5

1

1.5

2
cjpeg

2−WAY 4−WAY
0

0.5

1

1.5

2

2.5

3
mpeg2decode

2−WAY 4−WAY
0

0.5

1

1.5

2

2.5

3
mpeg2encode

2−WAY 4−WAY

scalar VIS CSI

Figure 8. Application-level speedups (w.r.t. the 2-way superscalar processor).

architecture yields an average performance gain over VIS
of 20% on average (range of 8% to 36%), and when the is-
sue width is four, the average speedup of CSI over VIS is
18% (range of 8% to 32%).

Finally, we remark that when the issue rate is 2, the
CSI-enhanced architecture attains higher speedups w.r.t. the
VIS-enhanced architecture than when the base system is a
4-way processor. This means that the performance of the
stream unit is rather insensitive to the processor issue width.
This makes the CSI architecture highly suitable for embed-
ded systems, where high issue rates and out-of-order issue
and execution are too expensive. The same observation has
been made in [6] for the MOM ISA extension.

5 Related Work

The CSI architectural paradigm was introduced in [29].
Since then we modified the architecture in order to accom-
modate more instructions using fewer opcodes. This is ac-
complished using the stream control registers. Furthermore,
we significantly extend the work described in [29] by pro-
viding results for several other benchmarks, by including
a detailed simulation of the memory hierarchy and by pro-
viding a comparison with VIS. In [29], just one benchmark
application was considered (an MPEG encoder) and the ef-
fect of cache misses was imitated by varying the latencies
of the CSI instructions.

CSI instructions eliminate the need for vector sectioning,
i.e., bookkeeping instructions needed for processing vectors
of arbitrary length in sections. An early proposal aimed at
hiding the actual section size (which is implementation de-
pendent) is the load vector count and update (VLVCU) in-
struction of the IBM/370 vector architecture [2].

There are many SIMD-style multimedia ISA extensions,
for example, MMX [21, 22], VIS [27], MDMX [18],
MAX [15, 16], AltiVec [9] and SSE [26]. They mainly dif-
fer in the number and types of the newly added instructions.
All of these ISA extensions operate on 64-bit registers, ex-
cept AltiVec and SSE, which operate on 128-bit registers.
However, as was argued in this paper, it is questionable if

increasing the register size further provides any benefit, be-
cause often, the number of stream elements stored consec-
utively in memory is rather small.

The differences between CSI and the Matrix Oriented
Multimedia (MOM) extension [6] have been discussed pre-
viously. MOM instructions can be viewed as vector ver-
sions of subword parallel instructions, i.e., they operate on
matrices where each row corresponds to a packed data type.

Another related proposal is the Imagine processor [12],
which has a load/store architecture for one-dimensional
streams of data records. It is centered around a large,
128KB stream register file, and consists of 48 functional
units grouped in 8 arithmetic clusters. Imagine is suited
for applications performing many arithmetic operations on
each element of a long, one-dimensional stream. It seems
less suited when only a few operations on each record are
performed or when the vector length is small.

CSI is a memory-to-memory architecture, i.e., there are
no programmer visible registers. There have been memory-
to-memory vector architectures in the past (for example,
the Texas Instruments’ TI ASC and CDC’s Star-100 [11]),
but they suffered from high startup cost which was mainly
due to long memory latency. Our experiments show, how-
ever, that all benchmarks considered exhibit very high L1
hit rates, and therefore, the startup cost is less of a problem.

6 Conclusions

In this paper we have presented an architectural
paradigm designed to accelerate streaming operations on
mixed-width data. The described Complex Streamed In-
struction (CSI) set has been evaluated using four multime-
dia benchmarks. On a number of important kernels, we
have observed average speedups of 4.0 relative to an ar-
chitecture extended with VIS instructions. These local im-
provements have resulted in application speedups of up to
36%.

One of the distinct features of the CSI architecture is
that the number of bytes which are processed in parallel
(the section size of processing width) is not determined by

the architecture but solely by the implementation. This en-
sures that no recompilation is needed in order to benefit
from a wider datapath. The CSI architecture also eliminates
overhead associated with data alignment and conversion be-
tween storage and computational format.

There are several important research issues regarding the
memory subsystem. An interesting option to investigate is
the direct interfacing of the CSI unit to the main memory. In
recent work [25] we have shown that in many media appli-
cations, the main memory bandwidth is the critical perfor-
mance factor while latency is less important. Contemporary
DRAM devices such as SDRAM and RAMBUS can poten-
tially supply data at high bandwidth. A controller is respon-
sible for issuing requests to utilize this bandwidth potential.
The design and evaluation of such a controller for stream-
ing accesses was performed by McKee et al. [17, 31]. These
studies showed that a controller with simple heuristics and
modest hardware cost can supply data at high bandwidth
and efficiently exploit the potential of contemporary DRAM
devices. Such a stream controller fits well into the CSI
paradigm because all information about the data streams is
available in the stream control registers and can be easily
communicated to the controller.

Acknowledgment. Thanks to Matthias Gries for providing
us with his corrected version of the SimpleScalar memory
model.

References

[1] R. Bhargava, L. John, B. Evans, and R. Radhakrishnan.
Evaluating MMX Technology Using DSP and Multimedia
Applications. In MICRO 31, pages 37–46, 1998.

[2] W. Buchholz. The IBM System/370 Vector Architecture.
IBM Systems Journal, 25(1):51–62, 1986.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. Technical Report 1342, Univ. of Wisconsin-Madison,
Comp. Sci. Dept., 1997.

[4] W. Chen, C. Smith, and S. Fralick. A Fast Computational
Algorithm for the Discrete Cosine Transformation. IEEE
Transactions on Communications, Sept. 1977.

[5] T. Conte, K. Menezes, P. Mills, and B. Patel. Optimization
of Instruction Fetch Mechanisms for High Issue Rates. In
ISCA’95, pages 333–344, 1995.

[6] J. Corbal, M. Valero, and R. Espasa. Exploiting a New Level
of DLP in Multimedia Applications. In MICRO 32, 1999.

[7] K. Diefendorff and P. Dubey. How Multimedia Workloads
Will Change Processor Design. IEEE Computer, 30(9):43–
45, 1997.

[8] M. Gries. The Impact of Recent DRAM Architectures
on Embedded Systems Performance. In EUROMICRO 26,
2000.

[9] L. Gwennap. AltiVec Vectorizes PowerPC. Microprocessor
Report, 12(6), 1998.

[10] J. Hennessy and D. Patterson. Computer Architecture - A
Quantitative Approach. Morgan Kaufmann, 2nd edition,
1996.

[11] K. Hwang and F. A. Briggs. Computer Architecture and
Parallel Processing. McGraw-Hill, 2nd edition, 1984.

[12] B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong,
J. Owens, B. Towles, A. Chang, and S. Rixner. Imagine:
Media Processing With Streams. IEEE Micro, 21(2):35–47,
2001.

[13] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communication Systems. In MICRO 30, 1997.

[14] R. Lee and M. Smith. Media Processing: A New Design
Target. IEEE Micro, 16(4):6–9, 1996.

[15] R. B. Lee. Accelerating Multimedia with Enhanced Micro-
processors. IEEE Micro, 15(2):22–32, 1995.

[16] R. B. Lee. Subword Parallelism with MAX-2. IEEE Micro,
16(4):51–59, August 1996.

[17] S. McKee, W. Wulf, J. Aylor, R. Klenke, M. Salinas,
S. Hong, and D. Weikle. Dynamic Access Ordering for
Streamed Computations. IEEE Micro, 49(11):1255–1271,
2000.

[18] MIPS Extension for Digital Media with 3D. Docu-
ment available via http://www.mips.com/Documentation/
isa5 tech brf.pdf.

[19] H. Nguyen and L. John. Exploiting SIMD Parallelism in
DSP and Multimedia Algorithms Using the AltiVec Tech-
nology. In ICS’99, pages 11–20, 1999.

[20] S. Palacharla, N. Jouppi, and J. Smith. Complexity-Effective
Superscalar Processors. In ISCA’97, 1997.

[21] A. Peleg and U. Weiser. MMX Technology Extension to the
Intel Architecture. IEEE Micro, 16(4):42–50, 1996.

[22] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for Multime-
dia PCs. Communications of the ACM, 40(1):24–38, 1997.

[23] C. Price. MIPS IV Instruction Set, revision 3.1. MIPS Tech-
nologies, Inc., Mountain View, CA, 1995.

[24] P. Ranganathan, S. Adve, and N. Jouppi. Performance of
Image and Video Processing with General-Purpose Proces-
sors and Media ISA Extensions. In ISCA 26, pages 124–135,
1999.

[25] D. Tcheressiz, B. Juurlink, S. Vassiliadis, and H. Wijshoff.
Performance of the Complex Streamed Instruction Set on
Image Processing Kernels. In Euro-Par’01, 2001. To appear.

[26] S. Thakkar and T. Huff. The Internet Streaming SIMD Ex-
tensions. Intel Technology Journal, May 1999.

[27] M. Tremblay, J. M. O’Conner, V. Narayanan, and L. He. VIS
Speeds New Media Processing. IEEE Micro, 16(4):10–20,
1996.

[28] S. Vassiliadis, E. Hakkennes, J. Wong, and G. Pechanek.
The Sum-Absolute-Difference Motion Estimation Acceler-
ator. In EUROMICRO 24, pages 559–566, 1998.

[29] S. Vassiliadis, B. Juurlink, and E. Hakkenes. Complex
Streamed Instructions: Introduction and Initial Evaluation.
In EUROMICRO 26, 2000.

[30] VIS Instruction Set User’s Manual. Document available via
http://www.sun.com/microelectronics/vis/, March 2000.

[31] L. Zhang, J. Carter, W. Hsieh, and S. McKee. Memory Sys-
tem Support for Image Processing. In Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT), 1999.

