
P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24

A Cost-Effective Load-Balancing Policy
for Tile-Based, Massive Multi-Core
Packet Processors
ENRIC MUSOLL
ConSentry Networks

Massive multi-core architectures provide a computation platform with high processing throughput,

enabling the efficient processing of workloads with a significant degree of thread-level parallelism

found in networking environments.

Communication-centric workloads, like those in LAN and WAN environments, are fundamen-

tally composed of sets of packets, named flows. The packets within a flow usually have dependencies

among them, which reduce the amount of parallelism. However, packets of different flows tend to

have very few or no dependencies among them, and thus can exploit thread-level parallelism to its

fullest extent.

Therefore, in massive tile-based multi-core architectures, it is important that the processing of

the packets of a particular flow takes place in a set of cores physically close to each other to minimize

the communication latency among those cores. Moreover, it is also desirable to spread out the

processing of the different flows across all the cores of the processor in order to minimize the stress

on a reduced number of cores, thus minimizing the potential for thermal hotspots and increasing

the reliability of the processor. In addition, the burst-like nature of packet-based workloads render

most of the cores idle most of the time, enabling large power savings by power gating these idle

cores.

This work presents a high-level study of the performance, power, and thermal behavior of tile-

based architectures with a large number of cores executing flow-based packet workloads, and pro-

poses a load-balancing policy of assigning packets to cores that minimizes the communication

latency while featuring a hotspot-free thermal profile.

Categories and Subject Descriptors: C.1.4 [Processor Architectures]: Parallel Architectures—

Distributed architectures

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Multi-core, many-core, packet processing, load balancing

ACM Reference Format:
Musoll, E. 2010. A cost-effective load-balancing policy for tile-based, massive multi-core packet

processors. ACM Trans. Embedd. Comput. Syst. 9, 3, Article 15 (February 2010), 25 pages.

DOI = 10.1145/1698772.1698782 http://doi.acm.org/10.1145/1698772.1698782

Author’s address: E. Musoll, ConSentry Networks, 1690 McCandless Drive, Milpitas, CA 95035;

email: enric@consentry.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1539-9087/2010/02-ART24 $10.00

DOI 10.1145/1698772.1698782 http://doi.acm.org/10.1145/1698772.1698782

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:2 • E. Musoll

1. INTRODUCTION
Multi-core architectures are becoming the de facto computing model for ap-

plications (such as networking, DSP and e-commerce) that present a high de-

gree of thread-level parallelism. These workloads are executed efficiently in

multi-core architectures, in terms of both power and performance: power can

be significantly saved by power gating unused cores, and performance increases

almost linearly with the number of cores as long as enough thread-level paral-

lelism exists. Future multi-core processors are expected to feature hundreds of

cores thanks to the increasing transistor integration capacity of future process

nodes [Borkar et al. 2007].

The main metrics that define how suitable a particular multi-core architec-

ture is to execute a certain workload are the following.

—Performance. Performance is defined by both the number of processed re-

quests per second, that is, the processing throughput, and the processing

latency per request.

—Power. Massive multi-core architectures are composed of a large number of

small cores usually interconnected among them in a mesh-like fabric. This

pool of cores potentially presents a high power density profile when the ma-

jority of the cores are running. But due to the burst-like nature of the ap-

plication workload [Jiang and Dovrolis 2003], most of the time several cores

are idle, and therefore they can be either clock gated (thus saving dynamic

power) or power gated (virtually saving all the power, but at a more costly

design effort). In any case, the regular nature of massive multi-core architec-

tures coupled with the burst-like nature of the workloads, makes these type

of architectures very appealing to power saving techniques.

—Temperature. The high-power density of massive multi-core architectures

translates into a high die temperature. The maximum temperature that

can be reached when all the cores are running may be above the maximum

temperature that the heat dissipation mechanism in place (package, heat

sink, air flow) can absorb. In this case, the operating system or some special-

purpose hardware takes action by throttling the ingress of requests or lower-

ing the power supply and/or frequency. In any case, even a low rate of requests

can create a hot spot if the cores assigned to the requests are close to each

other and the same set of cores is used all the time. In this case, even though

the overall power consumption of the processor is not high, the fact that the

power density is concentrated in a portion of the die creates some problems:

(a) The design of the package needs to accommodate these localized hot

spots, thus increasing its cost;

(b) If the localized hot spot always occurs in the same part of the die,

implying that the same cores are always being used, the wear of the

chip becomes imbalanced, thus increasing the probability of failure due

to the presence of heavily stressed cores.

Communication-centric workloads are fundamentally composed of sets of

packets, named flows. A flow is a sequence of packets from one particular

source to a single destination. More specifically, the packets of a flow share the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:3

same 5-tuple set of fields (source/destination address, source/destination port

and protocol type), effectively linking them to the same application data set,

and therefore, forcing a certain level of communication and/or synchronization

among them.

The degree of statefulness (data context shared among the packets of the

same flow) is higher in the upper layers of the OSI reference model (for ex-

ample the computation of the flow virus signature [Keromytis and Prevelakis

2007]) than in the lower ones (for instance the next hop information in the

routing table). In any case, this degree of statefulness reduces the amount of

thread-level parallelism among the packets of the same flow. However, packets

of different flows tend to have almost no dependencies among them, and can

fully exploit the thread-level parallelism.

Therefore, in multi-core architectures, it is important that the processing of

the packets of a particular flow takes place in a set of cores physically close to

each other to minimize the communication latency among them. This is espe-

cially important in tile-based multi-core architectures, which present a mesh-

type interconnect fabric that provides high communication bandwidth, low area

overhead, a very regular tile-like floorplan and a higher energy efficiency when

compared to a bus-based topology [Konstantakopoulos et al. 2007], but at a

cost of increased communication latency when the cores are physically distant

from one another. Other network topologies for multi-core such as the concen-

traced mesh [Balfour and Dally 2006] and flattened butterfly [Kim et al. 2007]

have been proposed to improve the limitations of the mesh interconnect. In this

work, however, we assume a simple mesh interconnect similar to the ones used

in recent tile-based multi-cores [Agarwal et al. 2006; Vangal et al. 2007].

Flow-based load-balancing schemes in multi-core architectures with a small

number of cores usually map a particular flow to a single core, so that the

processing order of packets within that flow is preserved, and the temporal

locality of the data associated to the flow is exploited (as long as the flow ag-

gregation degree is low) [Shi et al. 2003]. A problem with these schemes is the

workload imbalance that can occur in the presence of dominating flows [Shi

et al. 2005]. Moreover, extra buffering and control logic are needed to absorb

incoming bursts of packets corresponding to the same flow.

In multi-core architectures the flow data locality can be preserved as long

as the architecture features a distributed, shared level of caching [Azimi et al.

2007; Muralimanohar and Balasubramonian 2007]. Cores processing packets

of the same flow need however to synchronize to maintain the proper packet

processing ordering within a flow.

The load balancing goal for massive tile-based multi-core architectures then

is to use as many cores as the ingress bandwidth and application workload re-

quires, with cores that simultaneously process packets of the same flow physi-

cally close to each other. The reduced communication latency among packets of

the same flow decreases the overall flow processing time. This is desirable for

these reasons.

—Lower packet processing latency. Since the core will spend less time waiting

for remote data, it will complete the processing faster.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:4 • E. Musoll

—Higher processor processing throughput. When most of the cores of the pro-

cessor are actively executing packets, the longer it takes to process a packet

the lower the overall processor throughput is. This is not the case when sev-

eral of the cores are idle, where longer processing time is traded off for more

active cores, so the overall throughput remains the same (however, more

power is dissipated since more cores are active in average).

—Lower power dissipation. As soon as a core finishes processing a packet, it

can transition into a lower power state.

A second objective of the load-balancing policy is to spread the processing

of the different flows across all the cores of the processor in order to minimize

the stress that would otherwise occur if the same reduced set of cores is always

used to process packets. A proper load balancing of the packets across the cores

reduces the potential for thermal hotspots and increases the reliability of the

processor.

This work presents a high-level study of the performance, power and thermal

behavior of tile-based multi-core architectures (featuring a mesh-based inter-

connect fabric) executing flow-based packet workloads, and proposes a load-

balancing policy of assigning packets to cores that minimizes the communica-

tion latency while featuring a hotspot-free thermal profile. The idea behind this

policy is to dynamically restrict, based on the number of flows being processed,

the preferred set of candidate cores to process an incoming packet of a particu-

lar flow. This dynamic restriction increases the likelihood of two packets from

the same flow to be processed in nearby cores, and enables a good thermal hot-

spot behavior by spreading as much as possible the processing of flows across

all the cores.

2. DYNAMIC VIRTUAL CLUSTERING
The basic idea behind the proposed load balancing policy, henceforth named

Dynamic Virtual Clustering (DVC), revolves around the concept of a virtual

cluster. Figure 1 illustrates this notion. The top left diagram shows a 4x4 tile-

based multi-core, where cores are numbered starting from the lower left corner,

and increasing on a row-first basis. This diagram shows all the 16 cores being

part of a single virtual cluster (VC#0). This corresponds to a virtual cluster level

(VCL) of 0. The higher the virtual cluster level, the larger the number of virtual

clusters (2V CL). Virtual clusters are numbered following the same convention

as cores within a cluster (start at lower left corner, proceed row first), as the

rest of the diagrams in Figure 1 show. Note that the figure does not offer the

case of VCL = 4; this case corresponds to 16 virtual clusters, the same number

of physical cores.

The key decisions that the DVC policy has to address are:

—which virtual cluster the incoming packet will be assigned to (and to which

core within that cluster), and

—when to switch to a different virtual cluster level (VCL).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:5

Fig. 1. Virtual clustering concept.

2.1 Virtual Cluster Number Selection
Packet processing systems can handle a limited number of active flows. Once the

system detects that the incoming packet does not belong to any of the currently

active flows, a new flow is created (if the limit has not been reached) and a

flow number (typically generated as a hash of several fields of the packet) is

assigned to that flow. From that point on, and until the last packet of the flow

is processed (or the flow ages out due to inactivity), the flow remains active.

The DVC policy follows a simple mechanism to assign packets of a particu-

lar flow to a virtual cluster: the VCL least significant bits of the flow number

associated to a pac ket determine the virtual cluster number. The maximum

value of VCL is 2× log2(N), where N is the number of cores on the side of the

processor (for a total of N×N cores).

Assuming that the flow number has been generated with a high-quality hash

function,1 the contents of these bits provide a uniform distribution that trans-

lates into all the clusters being regularly used. This in turn helps spreading

the workload across the chip, which increases the reliability of the processor by

not stressing a small portion of the die. Once the virtual cluster is selected, a

lower-index-core scheme is used to assign the packet to a core within the cluster

(i.e., the available core with the lowest index with in the cluster is selected). In

the case that a packet has to be assigned to a particular virtual cluster but all

the cores within that cluster are busy executing other packets, DVC attempts

to find a core in another virtual cluster (rather than buffering the packet until a

core in the desired cluster is available), following a simple round-robin strategy

on virtual clusters until one is found with at least one available core.

1Both the checksum and CRC algorithms over the 5-tuple provide a good random beha vior [Jain

1992].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:6 • E. Musoll

Fig. 2. Probability density of the number of active flows in a particular multi-core system.

2.2 Virtual Cluster Level Selection
As mentioned before, a packet processing system maintains up to a fixed num-

ber of total active flows (TAF). An active flow is defined as a flow whose first

packet has been seen by the system (so the flow has been assigned a flow num-

ber), and its last packet still has to be processed.

Depending on how the aggregation of the different flows has taken place

prior to the arrival at the packet processing system, on the burst-like nature

of each flow, and on the particular characteristics of the application, packets

of only a subset of those active flows are being executed by the cores of the

processor. It may be the case that TAF is large (a million or more in state-of-

the-art routers), but packets of only a handful of those flows are being processed

during a certain period of time. In other words, processing of flows may present

temporal locality. Shi et al. [2005] show that the number of active flows, or flows

in transit, varies significantly as it can be derived from the probability density

plot in Figure 2 (reproduced from Shi et al. [2005]). It is expected, then, that the

number of flows having packets being processed during a period of time also

varies over time.

The DVC policy selects the level of virtual clustering (VCL) based on the

number of active flows that have packets being processed by the cores (hence-

forth referred to as currently running flows or CRF). More specifically,

VCL = min
(
2�log2(CRF)�, NC

)
, (1)

where NC is the total number of cores available in the processor. The total num-

ber of virtual clusters can not exceed the number of physical cores. Therefore, as

the number of currently running flows increases, so does the number of virtual

clusters, but at a power-of-two granularity, as was illustrated in Figure 1.

Figure 3 provides an example of how the DVC technique works for a simple

scenario involving four different flows with an arbitrary number of packets and

processing times and compares the load balancing decisions with two straight-

forward cluster-agnostic techniques.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:7

Fig. 3. Load balancing example for Round Robin, Lower Index First, and Dynamic Virtual Cluster.

—Round Robin (RRB). The next core is selected in a round-robin fashion.

—Square (SQR). Cores are selected so they concentrate on the same reduced

area (lower left corner of the die).

The figure shows which packets are being processed by which cores at four

specific time points (TP0. . . 3) for the three different techniques. The total num-

ber of active flows (TAF) and the number of currently running flows (CRF) are

also shown. Note that in this example TAF = CRF except for two time intervals,

where CRF is smaller. The first time point occurs when CRF = 1, the second

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:8 • E. Musoll

when CRF = 2, and so on, which translates to a VCL value of 0, 1, 1, and 2 re-

spectively. The following observations help to clarify the dynamics of the DVC

load-balancing mechanism.

—Upon receiving the first packet of the trace (flow #0), CRF is set to 1 since

only one flow has packets being processed once this packet is assigned to a

core. Since CRF is 1, VCL becomes 0, and a single virtual cluster is defined.

—The first two packets of the trace are assigned to the single virtual cluster.

This is the status at TP0.

—Upon receiving the first packet of flow #1, DVC recalculates CRF to 2 because

packets of two different flows will be concurrently processed once this packet

is assigned to a core. VCL becomes then 1, leading to two virtual clusters from

now on. Since the LSB bit of flow #1 is 1, the packet is assigned to VC#1.

—The next packet in the trace (second packet of flow #0), is assigned to VC#0

since at the time of its arrival, VCL is 1 and the LSB bit of flow #0 is 0.

Similarly, the next 4 packets (of flow #1) are assigned to VC#1. At TP1, the

two packets of flow #0 have already completed their processing, while all the

packets received from flow #1 are still being processed. Note that flow #0 is

still active at the system level since its last packet has yet to be seen, even

though no packet from flow #0 is being processed at TP1. Also note that even

though at TP1 there are only packets of a single flow being processed, CRF

remains at 2 because the update of CRF only happens at a start-of-processing

event, not at an end-of-processing event.

—The next three packets all are assigned to VC#0 since they belong to either

flow #0 or #2. The first packet of flow #2 increases TAF to 3. However, CRF

remains at 2.

—Upon the arrival of the first packet of flow #3, both TAF and CRF are updated

to 4 and VCL changes to 2. This packet is then assigned to VC#3, as indicated

by the 2 LSB bits of its flow number.

—At time TP3 there are 4 virtual clusters. Note that packets of flow #1 spread

across more than one virtual cluster. This is allowed since the number of

virtual clusters changes dynamically and the processing of packets do not

migrate to another core once they have started their processing. Incoming

packets of flow #1 will be assigned to VC#1, and the packet in VC#3 will

remain there until it completes the processing. Similarly, the packet from

flow #2 arriving right before TP3 was assigned to VC#2, while other older

packets of the same flow are running on VC#0.

The core assignment snapshots in Figure 3 for RRB and SQR reveal the

expected behavior of packets being scheduled (irrespectively of their associated

flow number) to either the next contiguously available core (RRB) or the first

available core in the lower left corner of the chip.

3. FRAMEWORK ENVIRONMENT
In this work we target future massive multi-core architectures processing

flow-based packet workloads. These architectures, featuring hundreds of cores,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:9

Fig. 4. Generic tile-based multi-core architecture.

usually present a mesh-type interconnect fabric. Some early examples of these

types of architectures are Agarwal et al. [2007] and Hoskote et al. [2007]. Future

implementations are expected to integrate a significant number of additional

cores thanks to the increasing area density of future technology nodes, the in-

herent scalability of mesh-based interconnect fabrics and the design-friendly

tile-based floorplan.

In this section we describe the area, performance and power model of a

generic tile-based multi-core architecture, and the packet activity generator

used in this work to exercise the processor model toward the evaluation of the

proposed load-balancing technique. This model is tailored for mesh-based in-

terconnection fabrics, which are the most cost effective way to connect a large

number of cores.

3.1 Area Model
Figure 4 shows a diagram of a generic implementation of a tile-based ho-

mogeneous multi-core processor, with external memory interfaces in all four

sides.2 Each tile consists of two main blocks: the core (execution pipeline plus

cache/memory) and the router, which connects the tile with the neighboring tiles

via four links (north, south, east and west). In this work, we assume that each

of these links can support one code or data request per cycle in each direction.

The parameters shown in the figure are described as follows.

— X , Y are the processor die dimensions.

— P, Q are the number of tiles on the side. The total number of cores is then

P ×Q .

—U, V are the core dimensions.

2We do not show the packet interface nor the special-purpose hardware that performs the buffering

and load balancing of the packets. Our focus is to concentrate on the performance, power and

thermal behavior of the pool of cores.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:10 • E. Musoll

—ϕ is the width fraction of the I/O Interface block, with respect to X and Y .

—σ is the fraction of the core area that is used by the router.

The figure offers a core floorplan (a stack of the three subblocks) and a top-

level floorplan (tiles side by side in a regular 2D layout with no abutment). On

each side of the die, the I/O Interface block bridges the requests from the pe-

riphery routers to external memory. This floorplan is assumed throughout this

work.

3.2 Performance Model
The time T (r, c) it takes to process a request r on a core c is modeled as follows:

T (r, c) = I (r) · ((1 − α(r)) · Z + α(r) · M (c))

F
,

where:

— I (r) is the total number of instructions to be executed to process request r.

—α(r) is the fraction of the instructions for request r that are memory related.

— Z is the average number of cycles it takes to execute a nonmemory instruc-

tion, including data and control dependencies, by a core. This number is the

same for all cores.

— M (c) is the average memory latency in cycles for a memory instruction exe-

cuted in core c.

— F is the operational frequency of a tile.

This expression assumes an in-order execution engine, which is representative

of the small, simple cores that massive multicore architectures feature.

The average memory latency M (c) takes into account the accesses to both

local and remote memories. A remote memory access may be served by another

core or by the external memory. M (c) is defined as follows.

M (c) = (1 − β) · L + β · R(c)

R(c) =
∑

k∈�(c) {2 · H(c, k) + L} + (2 · H(c, •) + E)

|�(c)| +1
,

where:

—β is the fraction of memory instructions that is served remotely (either by

another core or by external memory).

— L is the latency in cycles to obtain local data. This latency is the same for all

cores.

— R(c) is the average latency in cycles to obtain remote data by the core c.

—�(c) is the set of cores (other than c) that own data that core c will eventually

access. Let � be the set of cores that are running at any given time. So, if a

core c accesses the memories of all other running cores, then |�(c)| = |�| −1.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:11

— H(c, k) is the Manhattan distance, in number of tiles (or hops), between core

c and core k. If the two cores are side by side, this distance is 1. H(c, •) refers

to the Manhattan distance between core c and the external memory.

— E is the latency of the external memory, including the on-chip I/O interface.

Implicit in this expression are the following assumptions.

—The fraction of remote memory accesses (β) is equally distributed among

the other running cores that own some of the requested data (� set), and the

external memory. For instance, when no other core is running, then the whole

β fraction of memory accesses is served by the external memory; if there is

a single core running that owns some of the requested data, β/2 fraction of

memory accesses is served by the other core’s local cache and the other β/2

fraction is served by the external memory.

—It takes one cycle to traverse a tile. Therefore, if a core c accesses the memory

of another core k, the latency of routing the request, and later on the response,

is 2 · H(c, k) plus the memory access latency itself.3

—The portion of remote accesses to external memory is assumed to be equally

divided among the four physical sets of memories (one in each side of the

processor). Therefore, the average distance of core c to external memory

(H(c, •)) is actually (Q+P+2)/4 regardless of the placement of the core in the

die.

—The model assumes no contention in the router blocks of the different cores.

As it will be shown later, contention in these architectures is in average very

low.

Moreover, we assume that once a core has finished processing a request, it

writes back any dirty lines in its data cache and then invalidates all valid lines.

Thus, a core that is not executing any request does not serve any remote access

performed by any other core.4

In mesh-based, massive multi-core architectures, contention on the router

blocks of the tiles is in average low. The main reasons are the following.

—A mesh-based interconnect fabric presents a high bandwidth mechanism for

data transfer. In this work, we assume that each tile can sustain five requests

per cycle (to support the core’s own remote accesses and to serve other core’s

remote accesses or to route them to the proper destination).

—The cores tend to be simple, in-order, nonspeculative engines that issue mem-

ory requests at a rate lower than its peak IPC. So, assuming a single-scalar

3Actual implementations of routers could take at least one cycle but usually three [Dally and

Towles 2003; Peh and Dally 2001; Mullins et al. 2004] plus an additional one for the link to the

neighbor tile. A small tile traversal latency minimizes the remote access latency, favoring those

load-balancing techniques that assign packets of the same flow to spread out cores. This is not the

case for the technique proposed in this work, so the single cycle tile traverse latency is a conservative

assumption when comparing the proposed technique to the other ones.
4We made this assumption to simplify the performance model. The alternative of leaving the data

in the cache requires to keep the cache powered up when the core is idle, plus it introduces an

additional parameter to the model to account for data cache pollution across different flows.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:12 • E. Musoll

core, this rate is never higher than one request per cycle per core. Moreover,

several cores are often idle due to the burst-like nature of the workload, fur-

ther reducing the overall injection rate of remote traffic into the mesh fabric.

—Not all the instructions executed are memory or synchronization requests. In

typical workloads, around 50% or less of the instructions need to access mem-

ory. Moreover, depending on the application, a large portion of the memory

requests is locally served within the tile. Assuming a 20% local cache miss

rate (β = 0.2) and 50% of memory instructions in the workload (α = 0.5), and

a single-scalar core (Z ≥ 1), the rate of remote accesses is at most one every

four cycles.

Assuming each link can take one request per cycle, contention in a tile’s

router can occur when two or more requests are ready to be sent to the same

link at the same time; only one is able to proceed, and the other(s) need to wait

in link buffers. To illustrate the previous claim that the contention is low, the

following simulation is conducted.

— P = 16 and Q = 16, for a total of 256 cores.

— Z = 1 and L = 1; thus, the peak IPC is 1, achieved when all memory requests

are local.

— E = 200, which at a reasonable tile’s 1-2GHz frequency range, amounts to

200-100ns latency, including the latency at the I/O Interface blocks of the

processor.

— |�(c)| = |�| −1, implying that a core accesses all the other currently running

core’s memories.

—The remote accesses by a core are equally distributed between (a) all the

other running cores processing packets of the same flow, and (b) the external

memory.

—The accesses to external memory are equally distributed among the four sets

of external memory chips.

—The size of the requested data corresponds to the physical width of the link

(thus the transfer of data between neighboring tiles takes a single cycle).

—The external memory chips have enough ports to support the requests gen-

erated by the processor. In other words, the external memory bandwidth is

not the bottleneck.

Figure 5 shows the experiment results in terms of overhead percentage with

respect to the no-contention case. The plot presents this overhead for a range of

running cores (|�| = {16, 32, 64, 128, 256}) and several values of remote access

percentages (100·β). We can observe that the worst case in contention occurs, as

expected, when all the cores are running and when all the memory instructions

are serviced by a remote core or external memory. But even in this extreme

scenario, the overhead is less than 5% over the case in which no contention

exists. For more realistic scenarios, like for example β = 0.1 and |�| =128, the

overhead is about 1%. A simple store-and-forward, shorter-distance, column-

first routing algorithm is used in the experiment.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:13

Fig. 5. Contention overhead experiment (P = Q = 16, Z = 1, L = 1, E = 200, α = 0.5).

These results correlate well with the work in Konstantakopoulos et al. [2007],

where an analytical study (validated with real traces) is made for a 4x4 tile-

based processor. In that study it is shown that an injection rate of around 6%

provides approximately a 3% probability of contention. When we apply our

model to this case (α = 0.5 and β = 0.12 for an injection rate of 6%, and

P = Q = 4), we obtain 1.9% overhead. Therefore, in this work we do not factor

in any contention penalty on remote accesses since it has been demonstrated

to be small.5

3.3 Power Model
Power consumption of a block is composed of a dynamic component (which

depends on the voltage supply, the clock frequency, the capacitance, and the

signal activity), and a static component (which mainly depends on the voltage,

temperature and capacitance). Henceforth, let the static portion ratio of the

total power be δ.

We divide the power consumption of a tile into two values: the core’s power

and the router’s power. Furthermore, we express the router power as a fraction

of the tile’s power as follows:

Wtile = Wcore + Wrouter = Wcore + λ · Wtile = Wcore

1 − λ
,

where Wrouter is the average power of the router when all its links are being

used all the time, Wcore is the average power of the core when it is running and

λ is the router share of the overall tile power.

Power gating [Roy 1998] is a very attractive technique to reduce power con-

sumption in multi-core architectures due to not only the opportunities that

the burst-like workload presents, but also to the layout regularity of the ar-

chitecture: the power gating circuitry can be designed for a single core, and

5Again, no contention on the routers favors the techniques that assign packets to distant cores,

which is not the case with the proposed technique.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:14 • E. Musoll

Fig. 6. Power gating states and state transition diagram modeled.

deployed as many times as cores exist. The different cores in the processor can

be switched on and off by using, for example, a properly sized header (footer)

switch per core, composed of several transistors. This mechanism allows a par-

ticular core to be shut down when it is not executing anything and woken up

when needs to execute a request. When the core is shut down, virtually no

power is dissipated.

There are however both power and performance penalties when waking up

a core: the core needs to stabilize its voltage source (ground rail) before start-

ing the processing, there is extra power spent on the header (footer) circuitry

due to the gating of relatively large transistors plus the buffering of the on-off

signal from the control logic to the header (footer) switch. For a more in-depth

description of the different phases that exist in powering on/off a circuit, refer

to Hu et al. [2004].

We model the power gating mechanism as follows (see Figure 6).

—Whenever the core is running, it consumes Wcore Watts.

—Whenever the core is waiting for remote data, it is clock gated, thus consum-

ing only static power ((1 − δ) · Wcore = Widle Watts)

—Whenever the core has completed the processing of the packet, it transitions

instantaneously into the off state, consuming no power. Power gating effec-

tively eliminates the power consumption in the gated circuit, except for the

small contribution of mainly the header/footer switch. Any power and latency

overhead that this transition involves is lumped into the off-to-run transition

(WToRun Watts and a wakeup latency penalty of WL cycles).

Moreover, power gating is applied only to the core and not to the router block

since it is needed to route accesses even if the tile’s core is not processing any

packet. Power gating the routing block incurs in a large performance penalty

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:15

because it needs to be woken up to route a request. Adding ten cycles or more

of wakeup penalty to the one-cycle routing task is a very significant overhead

that heavily impacts the performance of the core that issued the remote access.

Thus, the router block r always consume static power, defined as follows:

W sta
router(r) = δ · λ · Wtile

and, the dynamic power is proportional to the routing activity as follows:

W dyn
router(r) = (1 − δ) · λ · Wtile · P (r)

Pmax(P, Q , α, β)
,

where P (r) is all the possible paths that cross router r and Pmax(P, Q , α, β) is

the theoretical maximum number of these paths (which depends on the number

of cores and the injection rate of remote requests). P (r) depends on the number

of running cores (including the core in the same tile as router r) and whether

remote requests by these cores are serviced or routed to other tiles by router r.

For P = Q = 16 and all cores injecting requests every cycle (except when the

core is waiting for the requested data), Pmax is found experimentally at 25, 088.

The power of the I/O block interface (WI/O) is set to a fixed, constant value

since it is expected to always be active scheduling the external memory requests

from the tiles.

Armed with both power and performance estimates for running a request

in a particular tile, a load-balancing mechanism (implemented in hardware

or at the OS level) can perform a quick decision on which of the idle cores

the request will be executed. A fast decision is desirable when executing light

workloads (of 100’s instructions, as in some networking applications), where

the load-balancing decision latency overhead can be significant.

3.4 TrafÞc Model
We use a synthetic packet traffic generator to exercise the tile-based multi-core

architecture described above. This traffic generator creates packets at a specific

rate (PKR) in millions of packets per second. There can be up to TAFmax number

of active flows in the system, and up to CRF currently running flows (CRF ≤
CRFmax ≤ TAF ≤ TAFmax) in the processor. The minimum/maximum number

of packets per flow is PPFmin/PPFmax (uniformly distributed).

An important knob of the traffic generator is the packet burst length (PBL),

which specifies how many packets from the same flow will be consecutively

generated. When PBL is 1, the packet generated corresponds to a flow number

different from the previous one (unless of course CRF is 1). PBL can be larger

than PPF for a particular flow, in which case the burst length for that flow will

be PPF (ie all the packets in that flow will be generated consecutively).

Figure 7 illustrates how the generator works with a simple example where

TAFmax = 4, CRFmax = 2, PBL = 3, PKR = 1, PPFmin = 3 and PPFmax = 6.

We can observe that the periods of flow locality vary in length (even though

CRFmax and PKR have fixed values) because of the variability in the number

of packets per flow. Moreover, whenever a new flow is created, it is assigned an

available, random flow number (0 . . . TAFmax−1).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:16 • E. Musoll

Fig. 7. Example of traffic trace generation for TAFmax = 4, CRFmax = 2, PBL = 3, PKR = 1,

PPFmin = 3 and PPFmax = 6.

Table I. Description of the Model Parameters and Values Evaluated

Area Parameters

X , Y die x,y size 20,20 mm

P, Q #tiles on x,y side 16,16

U, V tile x,y size 1.2,1.2 mm

σ router/tile size ratio 0.3

ϕ I/O i/f width vs X , Y ratio 0.02

Performance Parameters

I (r) #inst. per request r (1K,10K,100K)

α(r) memory/all inst. ratio in I (r) 0.4

β remote/all mem. access ratio (0.3,0.5)

Z (c, r) avg. clocks per non-memory instr. 1

L #cyc. of rout. lat. to local data 1

E #cyc. of rout. lat. to external data 100

F tile clock frequency 1GHz

W L core wakeup latency in cycles 100

Power Parameters

δ static/total power ratio (0.2,0.6)

λ router/tile power ratio 0.28

Wcore core power when running 180 mW

WToRun core power when waking up 90 mW

WI/O total I/O i/f power 5 W

Traffic Generator Parameters

PKR incoming packet rate (0.5,1,2,4) MPPS

TAFmax max total active flows 100K

CRFmax max currently running flows (10,50,100)

PBL packet burst length (1,4,16)

PPFmin min number of packets/flow 10

PPFmax max number of packets/flow 100

3.5 Summary of the Models
Table I summarizes the parameters that we have previously presented, and

provides the values that will be used henceforth. A thorough study of each of

the parameters is beyond the space constraints of this work, so we provide

reasonable values for most of them and focus in more detail on the rest.

In particular, we focus on an aggressive die size (20×20 mm2) and number

of cores (16×16 = 256), each core with a base core power of 180 mW and router

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:17

power of 70 mW (λ = 0.28, based on the reported value of 28% in Hoskote et al.

[2007]). The wakeup penalty of a core is set to 100 cycles, a reasonable number

for a relatively complex block with no state retention [Keating et al. 2007]. The

tile frequency is set to 1 GHz.

The static power ratio δ is set to 0.6, which has been typically reported as rep-

resentative of current and near future technologies [Kim et al. 2003]. However,

in a 65 nm implementation of a high-performance mesh interconnect [Hoskote

et al. 2007], the authors report a leakage power of around 15% the overall power.

Therefore, we also evaluate the case of δ = 0.20 to model advanced processes

featuring techniques like high-k dielectrics to reduce the gate-oxide leakage

portion of the static power.

The router block area is modeled to be 30% of the tile area (σ = 0.3), based

on tile layout measurements in Hoskote et al. [2007] and in Balfour and Dally

[2006]. The I/O interface width ratio (ϕ) is set to 0.04, rendering the total I/O

area to 64 mm2 (8% of the total die).

The number of instructions to execute per packet (I (r)) is set to 1K, 10K or

100K, with 40% of them accessing memory, out of which 20% or 50% require

remote accesses.6

Finally, for the traffic generator model, we generate four ingress packet rates

(0,5, 1, 2 and 4 MPPS), 100K active flows, three maximum currently running

flows (10, 50 or 100), packet burst lengths of 1, 4, or 16, and 10 to 100 (randomly

distributed) packets per flow.

4. RESULTS
In this section we present some of the results obtained with our event-based

simulator that implements the framework environment previously described.

Due to space constraints, we focus only on a relatively small set of results. A

comprehensive study of all the design space is beyond the scope of this work.

Figures 8 and 9 plot the average number of cores, the processing latency per

packet, the overall processing throughput and the power consumption when

varying the ingress packet rate and remote access ratio (x-axis), and the number

of instructions per packet (each row of plots). The packet burst rate is set to 1 and

the maximum currently running flows is fixed at 10. Later on we will analyze

the effect that these two parameters have as they take different values. For the

power plots, we also distinguish between a static power ratio of 20% and 60%

(last two plot columns). The three load-balancing techniques discussed in this

work (RRB, SQR and DVC) are evaluated.

Some conclusions that can be derived from these results are the following.

Regarding Performance.

—For a given remote access ratio, the latency decreases as the ingress rate in-

creases. The reason stems from how we model the communication among

cores: the larger the number of simultaneously running cores processing

packets of the same flow, the larger the percentage of remote accesses will be

6Therefore, we basically model the synchronization/communication among cores simultaneously

running packets of the same flow as a percentage (α · β) of all the instructions.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:18 • E. Musoll

Fig. 8. Results for RRB, SQR and DVC as a function of I (r), β, PKR and δ. PBL is fixed at 1 and

CRFmax is set to 10. The rest of parameters have the values listed in Table I.

served by remote cores, and thus the fewer, more expensive, accesses will be

served by external memory. As the ingress date increases, so does the num-

ber of average cores used, implying that more packets of the same flow are

currently processed.

—DVC always presents lower latency than both RRB and SQR. SQR has the

potential for low latency since cores are selected so they are always close to

each other. The latency reduction percentage of DVC versus SQR (RRB) is

usually in the single digit range, and up to 14% (25%) for the (I (r) = 10K,

β = 0.5, δ = 0.6, PKR = 2, PBL = 1, CRFmax = 10) case.

—As the number of cores utilized reaches saturation (approaching 256), the

benefit of DVC disappears since the probability of scheduling a packet to the

first-choice virtual cluster diminishes because it is found full (no available

core) most of the time.

—the overall throughput is similar for the three techniques. For those scenarios

with low core utilization, more throughput is traded off for more active cores.

For the high core utilization scenario (mainly the I (r) = 100K cases), the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:19

Fig. 9. Results for RRB, SQR and DVC as a function of I (r), β, PKR and δ. PBL is fixed at 1 and

CRFmax is set to 10. The rest of parameters have the values listed in Table I.

diminishing benefits of DVC renders all techniques having similar through-

put characteristics. Throughput saturates at about 0.55 MPPS and 0.35

MPPS for β = 0.3 and β = 0.5 respectively for PKR ≥ 1 MPPS.

Regarding Power.

—The lower latency of DVC translates into a lower overall power consumption

since fewer cores are active and therefore there are more opportunities for

power gating.

—However, the amount of power savings is not as high as the latency reduction

achieved. The reason is twofold: (a) a core that is waiting for remote data is

clock gated so it consumes only static power, and (b) there is a fixed (I/O blocks)

and variable (routers) power overhead, so the core-only power accounts for

only a fraction of the overall power. Thus, the power savings of DVC vs SQR

(RRB) for the same case singled out before is 10% (19%).

—Because of the clock gating performed by cores waiting for data and the

routers being powered on all the time, the overall power consumption is sig-

nificantly larger for a δ value of 0.6 versus 0.2.

Figure 10 analyzes in more detail one set of cases (I (r) = 10K, β = 0.5,

δ = 0.6, PKR = 2) when PBL and CRFmax are varied (Figures 8 and 9) showed

the case for PBL = 1 and CRFmax = 10). Here PBL takes values 1, 4, and 16,

and CRFmax takes 10, 50 and 100. Moreover, we just compare DVC against SQR

since it has been shown that SQR is better than RRB in terms of power and

performance. The plots show the absolute values for power and latency, and the

percentage reduction by DVC. We can extrapolate that for low CRFmax values,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:20 • E. Musoll

Fig. 10. Results for SQR and DVC for the (I (r) = 10K, β = 0.5, δ = 0.6, PKR = 2) case, varying

PBL and CRFmax .

Fig. 11. Variation of CRF and cores used for a short period of time (2 ms) for the (I (r) = 10K,

β = 0.5, δ = 0.6, PKR = 2, PBL = 4, CRFmax = 50) case.

the benefits of DVC diminish as PBL increases, but the trend is the opposite

for large CRFmax values. This behavior is expected since DVC is most efficient

in cases with large number of currently running flows, where packets can be

segregated into many virtual clusters. For small CRFmax , SQR becomes efficient

especially when PBL is large. In all cases except for PBL = 1 and CRFmax = 10,

the percentage reduction in both latency and power is in the single digit range.

Figure 11 plots the runtime CRF and cores used for a short period of time

(2 ms) for the (I (r) = 10K, β = 0.5, δ = 0.6, PKR = 2, PBL = 4, CRFmax = 50)

case.7 Core utilization presents greater variation than CRF since the number of

7The δ parameter does not affect this experiment.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:21

Fig. 12. Thermal plots of the 256-core die (and I/O blocks) for the (I (r) = 10K, β = 0.5, δ =
0.6, PKR = 2, PBL = 4, CRFmax = 50) case (left column) and the (I (r) =1K, β = 0.5, δ = 0.2,

PKR = 4, PBL = 16, CRFmax = 100) case (right column). Color coding is Red = Hot, Yellow = Warm,

Green = Cool, Blue = Cold (range applies within each plot, not across plots, even though a rough

comparison of all the plots based on color can be made). The min, max and average temperature is

shown below each plot.

packets being concurrently processed across all currently running flows varies

over time due to the burstiness of the incoming traffic. Nevertheless, as ex-

pected, the number of active cores broadly tracks the CRF runtime value.

Finally, Figure 12 shows the thermal plots for (I (r) = 10K, β = 0.5, δ = 0.6,

PKR = 2, PBL = 4, CRFmax = 50) and the lower power case (I (r) = 1 K, β = 0.5,

δ = 0.2, PKR = 4, PBL = 16, CRFmax = 100). We can observe that, as expected,

SQR presents the worst thermal profile with a large hotspot on the lower left cor-

ner. On the other hand, RRQ presents the smoothest temperature distribution,

while DVC features a thermal behavior very close to the optimal RRB. Note that

the important result is not in the reduction, if any, of the average temperature,

but rather in the reduction of (large) hotspots that can be observed in the ther

mal plots. All these thermal simulations have been obtained with the HotSpot

v3.0 tool [Skadron et al. 2003] using the default configuration parameters.

5. PREVIOUS WORK
Multi-core architectures and their power profile has been investigated exten-

sively in the past years [Monchiero et al. 2006; Li et al. 2006; Merkel et al.

2005; Kursun et al. 2004; Choi et al. 2007; Chakraborty et al. 2007]. Power

consumption in tile-based multi-core architecture has been addressed by a few

works [Eisley et al. 2006; Oliver et al. 2006; Huang et al. 2008].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:22 • E. Musoll

Migration of the processing activity has been proposed in several works [Heo

et al. 2003; Chaparro et al. 2004; Donald and Martonosi 2006; M. Gomaa and

Vijaykumar 2004; Huang et al. 2008] in order to spread the heat more uni-

formly across the die. The main drawback with this technique is the significant

overhead in area (since the units have to be replicated in Heo et al. [2003])

and/or performance (since the state of the c omputation has to be explicitly

copied to the new processing unit. Moreover, in Donald and Martonosi [2006]

the complexity of the migration decision algorithm is proportional to the numb

er of cores). Our work does not have these overheads because it follows a sim-

ple, yet effective in terms of throughput, run-to-completion service model where

processing is not migrated.

Pande et al. [2005] is a comparison of different interconnect fabrics that

can be implemented in an SoC, and in particular the mesh fabric that we use

in our work. The paper validates our claim that a mesh-based interconnect

provides high throughput at a low energy cost, and that at high degree of traffic

localization (where the communication is mainly local to close neighbors) the

energy per event (packet in this case) decreases. However, the paper does not

study how this localization degree affects the temperature of the chip.

The specific effect that load balancing incoming requests has on the power

and thermal characteristics in these tile-based architectures has been studied

in Musoll [2008] and Stavrou and Trancoso [2007]. Flow-based load balancing

in multi-core architectures has been addressed in Shi et al. [2005].

In both Musoll [2008] and Stavrou and Trancoso [2007] the authors assume

totally independent tasks (i.e., no remote accesses are modeled, which affect

the request runtime and therefore its power consumption). Moreover, the tech-

niques presented are flow-agnostic (in other words, all packets or requests are

assumed to belong to a single huge flow). Stavrou and Trancoso [2007] do not

take also into account the performance impact of core communication nor mod-

els the layout and power of the router blocks. Moreover, the authors use the

HotSpot tool to drive the thermal-aware load-balancing algorithm, which in-

curs a large performance overhead especially under lightweight workloads. In

our work, we do not need any temperature estimation, just the simple task of

keeping track of the number of currently running flows. Note that a precise

temperature estimation requires on-chip sensors that require a large overhead

since validation of the sensor outputs may need advance pattern recognition

techniques to compensate their inaccuracy, or use more accurate but bulkier

sensors, limiting the number of on-chip sensors that can be inserted [Lee et al.

2005; Coskun et al. 2007]. In a tile-based multi-core architecture, ideally there

should be one sensor per core, which is very costly if not impossible with a mas-

sive number of cores (the maximum number of sensors is currently 27 in IBM’s

POWER5 processor). Gunther et al. [2001] use profiling to determine the best

location for a single on-chip sensor. However, in massive multi-core processors,

the location of the hotspot(s) is less deterministic, and it highly depends on the

load balancing of the workload.

Shi et al. [2005] evaluate a system with up to 32 cores, leveraging the burst-

like traffic to assign bursts of packets of a given flow to a core, while differ-

ent bursts of the same flow can be scheduled to different cores to reduce the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:23

workload imbalance. In our work we take advantage of the large number of

cores to assign packets to cores at line rate, thus decreasing buffering space

and control logic complexity, rather than assigning a set of packets to the same

core. Moreover, we provide estimations on the power and thermal behavior of

our load-balancing technique and other simpler ones.

6. CONCLUSIONS
Future tile-based, massive multi-core architectures processing flow-based

packet workloads will feature hundreds of cores to exploit the large amount of

thread-level parallelism across flows. Packets within a flow, however, present

dependencies that diminish their efficient processing in a multi-core architec-

ture. This work presents a high-level study of the performance, power and ther-

mal behavior of tile-based architectures with a large number of cores executing

flow-based packet workloads, and proposes a load-balancing policy of assigning

packets to cores that minimizes the communication latency while featuring a

hotspot-free thermal profile.

REFERENCES

AGARWAL, A., BAO, L., BROWN, J., EDWARDS, B., MATTINA, M., MIAO, C., RAMEY, C., AND WENTZLAFF, D.

2007. Tile processor: Embedded multicore for networking and multimedia. In Proceedings of
the Symposium on High Performance Chips (Hot Chips).

AGARWAL, A., MUKHOPADHYAY, S., RAYCHOWDHURY, A., ROY, K., AND KIM, C. 2006. Leakage power

analysis and reduction for nanoscale circuits. IEEE Micro 26, 2.

AZIMI, M., CHERUKURI, N., JAYASIMHA, D., KUMAR, A., KUNDU, P., PARK, S., SCHOINAS, I., AND VAIDYA, A.

2007. Integration challenges and tradeoffs for tera-scale architectures. Intel. Tech. J. 11, 3.

BALFOUR, J. AND DALLY, W. 2006. Design tradeoffs for tiles CMP networks. In Proceedings of the
International Conference on Supercomputing.

BORKAR, S., JOUPPI, N., AND STENSTROM, P. 2007. Microprocessors in the era of terascale integration.

In Proceedings of the Conference and Exhibition on Design, Automation, and Test in Europe.

CHAKRABORTY, K., WELLS, P., AND SOHI, G. 2007. A case for an over-provisioned multicore system:

energy efficient processing of multithreaded programs. Tech. Rep. CS-TR-2007-1607. University

of Wisconsin.

CHAPARRO, P., GONZALEZ, J., AND GONZALEZ, A. 2004. Thermal-aware clustered microarchitectures.

In Proceedings of the International Conference on Computer Design.

CHOI, J., CHER, C.-Y., AND FRANKE, H. 2007. Thermal-aware task scheduling at the system software

level. In Proceedings of the International Symposium on Low Power Electronics and Design.

COSKUN, A., ROSING, T., AND WHISNANT, K. 2007. Temperature aware task scheduling for MPSoCs.

In Proceedings of the Conference and Exhibition on Design, Automation, and Test in Europe.

DALLY, W. AND TOWLES, B. 2003. Principles and Practices of Interconnection Networks. Morgan

Kaufmann.

DONALD, J. AND MARTONOSI, M. 2006. Techniques for multicore thermal management: Classifica-

tion and new exploration. In Proceedings of the International Symposium on Computer Architec-
ture.

EISLEY, N., SOTERIOU, V., AND PEH, L.-S. 2006. High-level power analysis for multi-core chips. In

Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embed-
ded Systems.

GOMAA, M., POWELL, M. D., AND VIJAYKUMAR, T. 2004. Heat-and-run: leveraging SMT and CMP

to manage power density through the operating system. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems.

GUNTHER, S., BINNS, F., CARMEAN, D. M., AND HALL, J. C. 2001. Managing the impact of increasing

microprocessor power consumption. Intel Tech. J. 5, 1.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

24:24 • E. Musoll

HEO, S., BARR, K., AND ASANOVIC, K. 2003. Reducing power density through activity migration. In

Proceedings of the International Symposium on Low Power Electronics and Design.

HOSKOTE, Y., VANGAL, S., SINGH, A., BORKAR, N., AND BORKAR, S. 2007. 5 GHz mesh interconnect for

a teraflops processor. IEEE Micro 27, 5.

HU, Z., BUYUKTOSUNOGLU, A., SRINIVASAN, V., ZYUBAN, V., JACOBSON, H., AND BOSE, P. 2004. Microar-

chitectural techniques for power gating of executing units. In Proceedings of the International
Symposium on Low Power Electronics and Design.

HUANG, W., STAN, M., SANKARANARAYANAN, K., RIBANDO, R., AND SKADRON, K. 2008. Many-core design

from a thermal perspective. In Proceedings of the Design Automation Conference.

JAIN, R. 1992. A comparison of hashing schemes for address lookup in computer networks. IEEE
Trans. Comm. 40, 3.

JIANG, H. AND DOVROLIS, C. 2003. Source-level IP packet bursts: causes and effects. In Proceedings
of the Conference on Internet Measurement.

KEATING, M., FLYNN, D., AITKEN, R., GIBBONS, A., AND SHI, K. 2007. Low Power Methodology Manual:
For System-on-Chip Design. Springer.

KEROMYTIS, A. AND PREVELAKIS, V. 2007. Designing firewalls: A survey. In Network Security: Cur-
rent Status and Future Directions. IEEE Press.

KIM, J., BALFOUR, J., AND DALLY, W. 2007. Flattened butterfly topology for on-chip networks. In

Proceedings of the International Symposium on Microarchitecture.

KIM, N., AUSTIN, T., BLAAUW, D., MUDGE, T., FLAUTNER, K., HU, J., IRWIN, M., KANDEMIR, M., AND

NARAYANAN, V. 2003. Leakage current: Moore’s Law meets static power. IEEE Comput.
KONSTANTAKOPOULOS, T., EASTEP, J., PSOTA, J., AND ARGAWAL, A. 2007. Energy scalability of on-chip

interconnection networks in multicore architectures. Tech. rep., MIT CSAIL.

KURSUN, E., REINMAN, G., SAIR, S., SHAYESTEH, A., AND SHERWOOD, T. 2004. Low-overhead core swap-

ping for thermal management. In Proceedings of the Workshop on Thermal-Aware Computer
Systems.

LEE, K.-J., SKADRON, K., AND HUANG, W. 2005. Analytical model for sensor placement on micropro-

cessors. In Proceedings of the International Conference on Computer Design.

LI, Y., LI, C., BROOKS, D., HU, Z., AND SKADRON, K. 2006. CMP design space exploration subject

to physical constraints. In Proceedings of the International Symposium on High Performance
Computer Architecture.

MERKEL, A., BELLOSA, F., AND WEISSEL, A. 2005. Event-driven thermal management in SMP sys-

tems. In Proceedings of the Workshop on Thermal-Aware Computer Systems.

MONCHIERO, M., CANAL, R., AND GONZALEZ, A. 2006. Design space exploration for multicore archi-

tectures: A power/performance/thermal view. In Proceedings of the International Conference on
Supercomputing.

MULLINS, R., WEST, A., AND MOORE, S. 2004. Low-latency virtual-channel routers for on-chip net-

works. In Proceedings of the International Symposium on Computer Architecture.

MURALIMANOHAR, N. AND BALASUBRAMONIAN, R. 2007. Interconnect design considerations for large

NUCA caches. In Proceedings of the International Symposium on Computer Architecture.

MUSOLL, E. 2008. A thermal-friendly load-balancing technique for multi-core processors. In Pro-
ceedings of the International Symposium on Quality Electronic Design.

OLIVER, J., RAO, R., BROWN, M., MANKIN, J., FRANKLIN, D., CHONG, F., AND AKELLA, V. 2006. The size

selection for low-power tile-based architectures. In Proceedings of the Conference on Computing
Frontiers.

PANDE, P. P., GRECU, C., JONES, M., IVANOV, A., AND SALEH, R. 2005. Performance evaluation and

design trade-offs for network-on-chip interconnect architectures. IEEE Trans. Comput. 54, 8.

PEH, L.-S. AND DALLY, W. 2001. A delay model and speculative architecture for pipelined

routers. In Proceedings of the International Symposium on High Performance Computer
Architecture.

ROY, K. 1998. Leakage power reduction in low-voltage CMOS design. In Proceedings of the In-
ternational Conference on Electronics, Circuits and Systems.

SHI, W., MACGREGOR, M. H., AND GBURZYNSKI, P. 2003. Effects of a hash-based scheduler on cache

performance in a parallel forwarding system. In Proceedings of the Conference on Communication
Networks and Distributed Systems Modeling and Simulation.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

P1: VLM

TECS0903-24 ACM-TRANSACTION February 6, 2010 20:29

Load-Balancing Policy for Tile-Based, Multi-Core Packet Processors • 24:25

SHI, W., MACGREGOR, M. H., AND GBURZYNSKI, P. 2005. A scalable load balancer for forwarding in-

ternet traffic: exploiting flow-level burstiness. In Processings on the Symposium on Architectures
for Networking and Communication Systems.

SKADRON, K., STAN, M., HUANG, W., AND VELUSAMY, S. 2003. Temperature-aware microarchitecture.

In Proceedings of the International Symposium on Computer Architecture.

STAVROU, K. AND TRANCOSO, P. 2007. Thermal-aware scheduling for future chip multiprocessors.

EURASIP J. Embed. Syst.
VANGAL, S., HOWARD, J., RUHL, G., DIGHE, S., WILSON, H., TSCHANZ, J., FINAN, D., IYER, P., Y.HOSKOTE, AND

BORKAR, N. 2007. An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS. In Proceedings of
the International Symposium on Solid State Circuit.

Received August 2008; revised January 2009, May 2009; accepted May 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 3, Article 24, Publication date: February 2010.

