
Chatroom over WLAN:
Systematical Development of a QoS-Integrated Distributed System

Jens Brandt, Reinhard Gotzhein, R̈udiger Grammes and Bernd Scḧurmann
Department of Computer Science

University of Kaiserslautern
67653 Kaiserslautern, Germany

Email: {j brandt,gotzhein,r gramme,schuerma}@informatik.uni-kl.de

Abstract: WLAN technology is an interesting alternative
to usual local area networks. Due to its sensitivity to noise,
realizing applications with QoS requirements on the basis
of this technology is a challenging task. In this paper, we
present the development of a chatroom over WLAN, focus-
ing on QoS aspects. In particular, we address the selection
of suitable and sufficient QoS-mechanisms on the applica-
tion, middleware, and basic service layers, and their har-
monization across layers.

1. Introduction

WLAN is a popular standard for wireless ad-hoc com-
munications. WLAN communication has several ad-
vantages. It enables mobility and portability. Instal-
lation costs can be reduced since no cable infrastruc-
ture is needed. However, the noise on the medium can
vary dynamically, and can become very high. For exam-
ple, Bluetooth cards and microwaves can interfere with
WLAN. Therefore, error correction and dealing with
heavily varying channel qualities is much more impor-
tant to WLAN communication than to other cable-based
communication technologies.

Using high-speed WLAN cards in modern buildings
enables a variety of applications, for instance,build-
ing controlneeding very short reaction times,file trans-
fer via Internet with high average throughput, andau-
dio andvideo communicationbased on isochronous data
streams. Each of these applications requires a spe-
cific quality of service in terms of reliability, throughput
(peak, average, minimum), latency, and jitter, as well as
certain service guarantees (deterministic, statistical, best
effort).

Due to the varying channel quality, deterministic guar-
antees for WLAN communication are beyond reach.
However, statistical guarantees are feasible in principle,
which is sufficient for many applications. For each ap-
plication, the following problem has to be solved: prop-
agate the QoS provided by the WLAN technology up to
the application level, while transforming it into the QoS
required by the application, and vice versa. For instance,
a raw throughput in bps on a TDM/FDM medium may
have to be mapped to a video data stream with a fixed
frame rate and an upper bound for latency and jitter on
the application level.

An approach to solve the stated problem is to develop
a small number ofgeneral-purpose protocol stacks, sup-
porting a wide range of applications on top of different
basic technologies, as done, for instance, in the Internet.
However, due to the wide spectrum of applications, the
communication services offered by these protocol stacks
will not always be adequate. In these cases,special-

purpose protocol stacksmay be developed in addition.
This approach offers the opportunity to fully exploit the
properties of the basic technology, and to define a pro-
tocol stack that is customized w.r.t. a particular applica-
tion, or a class of applications with similar communica-
tion requirements. These applications have to be modi-
fied to benefit from the special purpose stacks.

In this paper, we report on the development of achat-
room systembased onWLAN technology, focusing on
QoS aspects. The bandwidth needed by such a system
is low compared to the average bandwidth provided over
the WLAN basic service, but with several applications
competing for the medium, the available bandwidth can
still be a bottleneck. On the other hand, the chatroom
system is easy to implement and serves as a prototype
for systems with higher requirements on bandwidth and
delay. Further work will focus on adding audio support
to the chatroom system.

The chatroom system consists of a graphical user in-
terface, application components, a customized commu-
nication middleware, and a QoS-oriented WLAN driver.
Emphasis has been on the systematical development, and
on QoS-integration. Bysystematical development, we
refer to the methodological aspects, for instance, the
structuring of the system according to the QoS archi-
tecture [1], and the use of description techniques in all
phases.Qos-integrationaddresses the selection of suit-
able and sufficient QoS-mechanisms on each level of ab-
straction (application, middleware, basic service), and
their harmonization across system layers.

The chatroom system has the following features:

• Users are admitted to the chatroom only if a min-
imum rate of chat messages can be statistically
guaranteed (QoS provision).

• Access to the chatroom is granted on the basis of the
current weighted average transmission rate of the
WLAN medium (feedback loop) and the minimum
rate of chat messages.

• For each chat user, the maximum rate of chat mes-
sages is dynamically adapted to varying channel
quality, channel usage, and chat frequency (QoS
management).

• Chat messages can only be sent within the limits of
the current traffic contract (QoS control).

The paper is structured as follows: Section 2 surveys the
main concepts of QoS architectures. Section 3 describes



the overall architecture of the developed chatroom sys-
tem, and the functionalities of the system layers. Sec-
tion 4 shows how the QoS concepts outlined in Section
2 have been integrated into the system. In Section 5, we
draw conclusions.

2. Quality of Service Concepts

In this section, we identify the main concepts found
in current QoS architectures [1, 5] and describe them
briefly. We start with the constituents of a QoS speci-
fication, and then address the various functionalities of
distributed systems supporting QoS in one way or an-
other.
2.1. QoS specification

The QoS specification is part of a traffic contract be-
tween a set of service users and a service provider. De-
pending on the kind of service, the concrete parameters
of the QoS specification may vary. For instance, quality
of service can be defined from the distributed applica-
tion point of view, which involves resources and QoS at-
tributes as perceived by the user. Or, it can be defined
from the hardware point of view, addressing concrete
resources such as communication media, memory, and
CPUs. The QoS specification – independent of the level
of abstraction – usually addresses the following aspects:

• performance: quantitative aspects of the traffic con-
tract (e.g., peak and average throughput, burst char-
acteristics, delay, jitter, loss rate, corruption rate)

• synchronization: time relationship between differ-
ent streams (e.g., lip synchronization for audio and
video streams)

• QoS guarantee: binding character of the traffic con-
tract (e.g., deterministic, statistical, best effort)

• QoS management policy: scalability aspects (e.g.,
reduction of frame rate or resolution in case of de-
teriorating throughput)

Depending on the kind of service, only some of these as-
pects may be relevant, while others are neglected. Also,
depending on the service provider, only some of these
aspects may be actually supported. For instance, in the
Internet, only best effort guarantees can be given.
2.2. QoS provision

Before a service can be provided with a certain qual-
ity, a traffic contract is negotiated. Based on the QoS
specification, the service provider checks the resource
situation, and allocates resources. This requires a QoS
mapping, admission control, and the coordination of lo-
cal reservations:

• QoS mapping: The objective here is to translate the
QoS specification supplied by the service user to the
resource view of the service provider, i.e., to asso-
ciate resources of different levels of abstraction and
to determine corresponding QoS parameter values.
For instance, throughput in terms of the application
may be measured in video frames per second and
resolution, with further requirements on delay and

jitter, and is then mapped to periodicities, deadlines,
and processing times for processor and communi-
cation medium, and possibly the size of a playout
buffer. As the service provider may itself be re-
fined into protocol entities using a lower service,
QoS mapping may occur several times.

• reservation protocol: To provide a communication
service with a specified quality of service, virtual
connections are established and maintained. In par-
ticular, routes are determined such that the QoS re-
quirements of the service users are met. Moreover,
the local reservations are coordinated. Further as-
pects covered by the reservation protocol may be
the handling of connections with dynamic QoS re-
quirements, the support of multicast connections,
or the dynamic establishment of alternative connec-
tions due to changes in connectivity.

• admission control: To accept a new service request,
the resource situation has to be checked, based on
the QoS specification obtained after the QoS map-
ping. This is addressed by an admission test, which
depends on the kind of resources, the scheduling
strategies and the QoS guarantees. Part of the ad-
mission test may be, for each resource, a schedu-
lability test. Furthermore, admission control cov-
ers the reservation and release of local resources
and the dynamic adaptation of existing reservations.
Also, distributed resources such as communication
media can be taken into account.

It should be pointed out that admission control and the
coordination of reservations may occur on several lev-
els of abstraction. For instance, some decisions may be
taken on the application level, while further decisions are
postponed until the communication middleware or even
the basic technology.
2.3. QoS control

If a service request is granted, a traffic contract is
established between the service user and the service
provider, with obligations for both parties. QoS control
refers to short term functionalities applied by the service
provider to fulfill his traffic contracts:

• traffic policing: To be able to fulfill his part of a
contract, the service provider may wish to compare
the actual traffic with the agreed traffic (traffic con-
trol). If the actual traffic exceeds the agreed traffic,
the service provider may apply measures to adapt
it (traffic shaping), for instance, by discarding or
postponing data.

• scheduling discipline: The purpose of the schedul-
ing discipline is to control the competition of ser-
vice request units (e.g., messages) for a particular
resource by applying certain preference rules. To
provide deterministic guarantees, for instance, rate-
monotonic scheduling or earliest deadline first are
well-known disciplines.

To ensure that the number of competing request units
can always be served, schedulability tests are carried out



chat user

userSAPchatSystem

basicService

mwSAP

bsSAP

chatApplication

communicationMiddleware

Figure 1: Structure of the chatroom system

as part of the admission test (see Section2.2.). Further-
more, traffic shaping techniques may be applied.
2.4. QoS management

QoS management refers to long term functionalities
applied by the service provider to fulfill his traffic con-
tracts. These functionalities are needed if the network
load can exceed the network capacity, for instance, in
case of statistical guarantees or best effort, and support
the adaptation of QoS as well as the improvement of net-
work performance. The following functionalities can be
distinguished:

• QoS monitoring: Here, the current performance pa-
rameter values of the network (e.g., throughput, de-
lay, jitter, loss rate) are determined.

• QoS maintenance: This covers all kinds of tuning
measures to fulfill current traffic contracts, and is
based on the network status.

• QoS scaling: To cope with deteriorating network
performance and increasing service requests, sev-
eral approaches can be considered. For instance,
QoS filtering techniques can be applied to reduce
network load, for instance, in order to adapt data
streams in group communication scenarios. Also,
the sender may adapt his traffic to changing net-
work characteristics.

While QoS provision and QoS control are usually asso-
ciated with deterministic or statistical guarantees, QoS
management is also useful in case of best effort net-
works.

3. System design

Before going into QoS details, we describe the archi-
tecture and general design of the chatroom system. The
system is divided into three layers (see Figure1):

• chat application: The application provides the
graphical user interface for the chatroom system,
handles user input, and displays chat messages and
other information.

• communication middleware: The middleware is the
core of the chatroom system. It manages the chat-
rooms, distributes the chat messages, and provides

the central resource management functions. The
middleware is customized to the application, and
the WLAN basic service.

• basic service: The basic service adapts a basic
technology (WLAN). It controls the hardware and
medium access and gives feedback on the current
resource situation (link quality, load, etc.). It offers
service primitives to send and receive frames reli-
ably to one or more receivers (multicast support).

3.1. Application
The application consists of the user interfaceuser-

SAP and thechatApplication. userSAP is the interface
over which the chat user interacts with the chat system.
It takes input from the user and displays information and
messages, e.g. information about the currently active
chatroom and the users subscribed to this chatroom. It
consists of the following elements:

• A dialog for entering a username.

• A text window for displaying chat messages and
events.

• An input-line for entering commands and chat mes-
sages.

• A user-list of the currently active chatroom.

The chatApplication parses user input, extracts com-
mands from the user and performs the necessary calls to
the middleware interface. It also handles messages and
events coming from the middleware over the middleware
interface. The user commands are as follows:

• open(name,description), close(name): opens
(closes) a chatroom with anameand adescription.

• list(): lists all open chatrooms with their descrip-
tion.

• join(name), leave(): the user joins (leaves) the cha-
troomnameand the user-list is filled with the par-
ticipants of this chatroom (or is cleared).

• send(msg): msgis sent to the active chatroom.

3.2. Middleware
The middleware provides all functions to manage cha-

trooms. After a successfullogin, the chat application can
access the following service primitives at themwSAP
interface:

• openCR(cr,desc), closeCR(cr): A chatroom with
namecr and descriptiondescis opened (is closed).

• listCR(): A list containing all open chatrooms and
their descriptions is returned.

• joinCR(cr,qos), leaveCR(cr): Join (Leave) chat-
roomcr with QoSqos(see Section4.1.).

• sendToCR(msg): Send the chat messagemsgto all
application entities of this chatroom.



communicationMiddleware

broker

crServer crClient

Figure 2: Structure of the middleware

Moreover, the application is notified when certain events
occur:

• crClosed(): The current chatroom has been closed
by its administrator.

• userJoined(usr), userLeft(usr): The userusr has
joined (has left) the chatroom.

• msgReceived(msg): A new chat messagemsghas
been received.

The communication middleware consists of three
parts (see fig2): the connection to the application
appEntitySet, the connection to the basic servicebt-
Codex, and in between the part which contains the ac-
tual functionality, thecoreMiddleware.

appEntitySet accepts new connections from applica-
tions, and creates proxies, over which the further com-
munication with the core middleware is processed. It
checks the users’ identity and controls the access to
chatSystem. btCodex deals with specialties that the
use of a basic service involves. These are e.g. segmen-
tation, reassembly, and lower layer setup. The block in-
teracts with the basic service by means of service primi-
tives.
The core middleware consists of three sub-blocks
crServer, crClient, andbroker.

The administration of the chatrooms is distributed
over a chatroom server and its clients. The server con-
trols the chatroom names. It maintains a list of created
chatrooms and ensures that names are unique. Moreover
it knows their description, their administrator, the names
of subscribed users, and how to contact the chatrooms.
So, clients requesting this information can contact the
server, avoiding to ask all other clients. The clients, on
the other hand, accept requests from the chat application
entities (openCR, closeCR, joinCR, leaveCR) and send
them to the server. The server notifies affected clients
when the information changes, e.g. a user leaves a cha-
troom. The transmission of chat messages (sendToCR)
is done by the clients themselves, without participation
of the server. The clients maintain a list of local end
points of each chatroom and take over the distribution of
incoming messages.

While the client part is active in all middleware en-
tities, the server is activated in exactly one of the net-
work nodes. After starting of one or more middleware
instances, the entity which will provide these functional-
ities is elected.

Thebroker provides a convenient abstraction layer for
the communication between client and server. To contact
the server, clients do not need to know the location of the
server, thebroker undertakes the task of distributing the
messages in both directions.

Each chatroom is mapped to a multicast address of
the basic service, which is requested during creation of
a chatroom. So, joining (and leaving) a chatroom is
done by joining (and leaving) the corresponding multi-
cast group. Sending a message to a chatroom is done
simply by sending the message to the multicast address.
3.3. Basic service

The basic service is responsible for the transmission
of messages between the network nodes. Generally, it is
possible that several middleware instances connect to a
single basic service instance.

• get unicast(address), put unicast(address): To
send and receive messages, each communica-
tion middleware must initially request an address
(get unicast). Releasing the address is achieved by
put unicast.

• get multicast(address), put multicast(address):
The basic service allows multicast communication,
too. Initially, a multicast group is created by allo-
cating an unused multicast address (get multicast),
which is released after its use (put multicast).

• (un)registermulticast(address): All stations that
want to receive the messages of the group have to
subscribe.

• sendframe(r address,saddress,data): The basic
service provides this service primitive to send a
message. All receivers are notified by calling their
receiveframecallback function.

The basic service is reliable, i.e. transmitted messages
eventually arrive at the receiver without corruptions. The
error and loss control is directly obtained from the colli-
sion detection of the medium access on this layer, which
is similar to the protocol described in the IEEE 802.11
WLAN standard [4].

The basic service offers QoS monitoring functions,
which are used by the communication middleware.
These functions describe the link quality and current
load of the medium.poll bandwidthreturns the average
bandwidth. Every time a frame is sent, its sending delay
is reported to the basic service users byqos feedback.
The basic service uses adaptive error correction to op-
timize the transmission quality using rate-compatible
codes for channel coding [3].

4. QoS Components and QoS Mapping

The system that has been described so far lacks sup-
port for QoS mechanisms. This section describes how
components have been added to fulfill the QoS require-
ments. To test different strategies and to benefit from
reuse techniques, these components have been designed
asmicro protocols(i.e. self-contained protocols with a
small functionality [2]).



quality
subjective

optimal

good

acceptable

useless

granted QoS

mimimum optimum

Figure 3: Subjective quality

The core QoS functionality is located in the com-
munication middleware. The basic service supports it
by offering monitoring functions. The application, in
turn, uses the QoS service primitives of the middleware.
Since the different layers in the system are tightly inte-
grated, an unnecessary duplication of QoS components
is avoided.

Designing the QoS components, we have to take into
account the properties of the WLAN technology. Un-
like other cable-based technologies, the total bandwidth
of the medium changes with time due to noise. There-
fore, deterministic guarantees cannot be given. Rather
statistical guarantees based on an average transmission
rate are feasible. Reservations have to be granted based
on an average, not on a nominal transmission rate.

Furthermore, for each user, a minimum and an opti-
mum transmission rate are defined. The reservation is
made on the basis of the minimum rate, because as many
users as possible should be supported. Dynamically, the
QoS is scaled: If the medium has free capacity, each user
can get up to the nominal transmission rate. If the capac-
ity deteriorates (due to noise), then the transmission rate
is reduced even below the reserved rate. The user gets
feedback on any QoS change.

In the chatroom system, a certain QoS is requested by
specifying an upper limitu and a lower limitl of mes-
sages per minute. The meaning of these bounds is as fol-
lows: a user needs at least the lower boundl - giving him
less thanl is useless. On the other hand, the user does not
need (and cannot use) more than QoSu. In the chatroom
system, these bounds result from a minimum rate of mes-
sages that is needed for a conversion without unbearable
chat message delays (lower bound), and the maximum
typing speed of the user (upper bound). In other appli-
cations like audio communication, these two bounds can
be defined, too: the least QoSl to transmit with a suffi-
cient audio quality to understand the conversational part-
ner and the QoSu where no quality improvement can be
noticed (Figure3).

Using a wireless medium for the communication be-
tween the nodes, we have to address some problems as
said in the introduction. Different from other basic tech-
nologies, the WLAN service only gives statistical guar-
antees, because unpredictable noise can reduce the QoS
or even prevent the whole communication. So, strategies
to react to QoS violations caused by disturbances on the
medium have been defined on all layers of the system.

The system reacts by scaling the QoS of the users
respecting their upper and lower bounds. Under nom-

Table 1: QoS specs on different levels
layer requested QoS granted QoS

user (un)experienced red,yellow,green
application #msg/min #msg/min

(min. and opt.)
middleware mwQoSClass #frames/min

(see Table2)
basic service #bytes/sec #bytes/sec

Table 2: QoS classes on middleware level
mwQoSclass param. description

constant min constantmin frames/min
variable min minimal min frames/min

max maximalmaxframes/min

inal conditions, everybody is granted at least the re-
sources minimally needed. If this cannot be provided,
some users are notified and temporarily withdrawn all
resources.

Continuously, the chat system gives feedback about
the granted QoS. At the user level, the QoS is described
by one of following three classes:Greenmeans that the
upper bound can be guaranteed,yellowwill be signaled
if the granted QoS is in between the specified lower and
upper bound.Redmeans that not even the lower bound
of QoS can be granted and the user is set to read-only
mode.
4.1. QoS specification

All QoS mechanisms rely on an adequate QoS spec-
ification. In the chatroom system, two things must be
described: The first one is the QoS requested by a cha-
troom user. On user level, this is done by distinguish-
ing between experienced and unexperienced users. The
other one is the QoS that is granted by the basic service.
Depending on available resources, the user is shown a
red, yellow or green QoS indicator (as described above).
Other software layers use other levels of abstraction and
therefore use other QoS specifications (which requires
qos mapping, see Section4.2..1). Table1 sums up the
QoS specifications which are used at the various layers
of the chatroom system.

The QoS class of the middlewaremwQoSClasscan
be chosen from Table2. QoS class ’constant’ specifies
a single, minimum number of frames per minute, while
QoS class ’variable’ allows the specification of the min-
imum and the maximum number of frames per minute.
4.2. QoS provision
4.2..1 QoS Mapping

As the different parts of the system use different QoS
specifications (see Table1), functions are needed which
map between the different abstractions.

user↔ application The mapping between user level
QoS (requested as well as granted) and application level
QoS is performed according to Tables3 and 4. Table
3 describes what number of chat messages per minute
(minimum and optimum) the application associates with



Table 3: QoS Mapping of user requests
user level applic. level applic. level

minimum optimum

experienced 2 msg/min 4 msg/min
unexperienced 1 msg/min 2 msg/min

Table 4: QoS Mapping of system feedback
middleware application user

granted< min red read only
min≤ granted< opt yellow minimum
granted = opt green optimum

an experienced or unexperienced user; Table4 specifies
how the system feedback is mapped to user feedback
depending on the granted number of chat messages per
minute.

application ↔ middleware The middleware trans-
lates the application requests to its QoS classes regard-
ing the size of messages and frames (data unit which
can be transmitted by the basic service). For this, the
mwQoSClass ’variable’ (see Table2) is used, since it
allows a minimum and a maximum number of frames
per minute (corresponding to the minimum and optimum
number of messages on application level) to be specified.
In the other direction, the granted QoS is mapped from
frames per minute to chat messages per minute (see Ta-
ble1) according to the following formula:

#msg
min

=
#frames

min
· 1

#frames
msg

#frames
msg is calculated from the recent traffic.

middleware ↔ basic service The mapping between
middleware and basic service QoS is calculated in the
same way:

#frames
min

= 60 · #bytes
sec

· 1
#bytes
frame

4.2..2 Reservation protocol

The crAdminServer and thecrAdminClient (see Fig-
ures4 and5) are the core parts of the middleware. They
realize the functional requirements of the chatroom sys-
tem described in Section 3.

Moreover, they perform the coordination of the QoS
reservations and handle the dynamic QoS requirements.
E.g. if a new user joins a chatroom, thecrAdminClient
will issue a QoS request to the centralcrAdminServer
which will forward it to theadmissionControl.

4.2..3 Admission control

Looking at the requirements, every user of the chat-
room system is statistically guaranteed a number of mes-
sages depending on his experience. So, before join re-
quests from new users are accepted, its has to be checked

crServer

serverElect admissionControl

crAdminServer

Figure 4: Structure of the chatroom server

crClient

qosScaling crAdminClient

schedulingqos
Monitoring

Figure 5: Structure of the chatroom client

whether this guarantee can be fulfilled under the current
resource situation. Therefore, a global admission control
is added to the server (see Figure4).

Admission is granted depending on the remaining
bandwidth of the basic service, which is calculated from
the average bandwidth (obtained bypoll bandwidth) and
the already reserved bandwidth.
4.3. QoS control
4.3..1 Traffic policing

Application and middleware negotiate on the number of
messages each user can send to the chatroom. To fulfill
its part, the application compares the actual number of
messages with the agreed number. This is controlled by
a traffic policing process inside the application, which
non-command messages must pass.

Currently, the leaky bucket algorithm is used to con-
trol the traffic [6]. Each user may send a certain number
of chat messages corresponding to his QoS value. This is
realized by increasing a counter for every message sent,
and decreasing it periodically after a fixed time span has
elapsed. If the number of non-command messages ex-
ceeds the number of messages guaranteed by the traffic
contract, the additional messages are queued and sent at
a rate that conforms the contract with the middleware.
This means that command messages are able to overtake
non-command messages.

4.3..2 Scheduling discipline

Service request units that have passed the QoS control
must be scheduled according to their priority. Since
there is only one application with homogeneous QoS-
requirements, i.e. all messages have the same priority,



the service request units can be scheduled in order of ar-
rival (first come first served). In case of applications with
heterogeneous QoS-requirements, this scheduling strat-
egy is no longer sufficient.

Two user classes (experienced, unexperienced) exist
on user level. Since experienced users may send chat
messages at a higher rate than unexperienced users, a
rate monotonic scheduling strategy could be used to give
chat messages arriving in shorter intervals a higher pri-
ority.
4.4. QoS management
4.4..1 QoS monitoring

Although every user is guaranteed a certain transmis-
sion rate by the admission control, there are situations in
which the throughput of the basic technology temporar-
ily is less than required. To deal with this effect, the
communication middleware has to detect it. This is done
by monitoring the send delays of the basic service, that
is the time difference between the send request and the
sending of the message, using itsqos feedbackfunction.
If the traffic exceeds the capacity of the medium, frames
will be queued in the basic service and the send delay is
high. If there is little traffic, frames can be sent more or
less immediately and the send delay is low.

In order to measure the send delay even when there
is currently no traffic, qos monitoring frames are sent
periodically.

As reservations have to be granted based on an av-
erage (avg), not on a nominal (nom) transmission rate,
the basic service regularly determines the average rate
by dynamic measurement (poll bandwidth).

4.4..2 QoS scaling

The QoS scaling is completely performed in the com-
munication middleware. Depending on the feedback de-
scribed above, a local closed-loop feedback strategy cal-
culates the QoS of the users, which must adapt their traf-
fic. To assess the situation, the boundaries of the interval
in which the send delays normally lie (provided that all
users send their requested number of messages and noise
does not disturb the communication) are calculated.

When a user joins a chatroom, the chat application re-
quests a minimum and optimum number of chat mes-
sages per minute. Initially, he is given the minimum
number. Every 30 seconds, the send delays collected by
theqosMonitoring are evaluated: if they are outside the
calculated boundaries, the QoS of one user is adapted. If
the send delays are too high, the allowed number of mes-
sages for the selected user is decreased. If they are near
the optimum, it is increased, respectively. This adapta-
tion tends to be fair, i.e. users with low QoS are first
granted more resources.

5. Conclusions

We have presented the systematical development of
a QoS-integrated chatroom over WLAN. Starting from
a set of requirements, for instance, concerning the
throughput of chat messages, we have designed a lay-
ered system with QoS components on each layer by in-

troducing self-contained QoS micro protocols, each of
them dealing with a certain QoS aspect (e.g., QoS map-
ping, admission control, QoS scaling). Due to the na-
ture of WLAN technology, a closed loop strategy that
dynamically adapts to changing QoS has been followed.
The resulting system is highly modular, with QoS com-
ponents that can be replaced to implement different QoS
mechanisms.

The implementation of the chatroom meets all spec-
ified requirements. In particular, the QoS requirements
are satisfied during nominal operation of the basic ser-
vice: throughput and end-to-end delay remain within
the specified boundaries. If the medium cannot satisfy
the traffic contract due to environmental conditions, the
number of supported chat users is temporarily reduced.
Under all conditions, the chatroom system grants the
minimum QoS to as many users as possible.

The next goal is to add audio support to the chatroom
system and to enable the routing of messages over dif-
ferent networks (e.g. the internet), in order to make the
system accessible for a higher number of users. For fu-
ture versions of the chatroom system, the integration of
other basic technologies (like powerline) is conceivable.
Another aspect is the support of different applications.
For this, the middleware has to be extended to control
the competition of service request units from different
applications. It will be interesting to see how these new
requirements fit into the system structure developed so
far. We believe that further QoS functionality can be
integrated in a straightforward manner into the given
system. Further research will address the definition of
a QoS component framework and a QoS microprotocol
pool.

REFERENCES

[1] A. Campbell, C. Aurrecoechea, and L. Hauw. A re-
view of QoS architectures. InProceedings of the 4th
IFIP International Workshop on Quality of Service,
Paris, France, 1996.

[2] Reinhard Gotzhein, Ferhat Khendek, and Philipp
Schaible. Micro protocol design: The SNMP case
study. In Proceedings of the 3rd SAM Workshop,
Aberystwyth, June 2002. SDL Forum Society.

[3] J. Hagenauer. Rate-compatible punctured convolu-
tional codes (RCPC codes) and their appplications.
IEEE Transaction on Communications, 36(4):389–
400, April 1988.

[4] Wireless LAN medium access control (MAC) and
physical layer (PHY) specification, 1997.

[5] F. Rößler and B. Geppert. Applying quality of ser-
vice architecture to the field-bus domain. InPro-
ceddings of the 2nd IEEE International Workshop
on Factory Communications Systems (WFCS’97),
Barcelone, Spain, 1997.

[6] Andrew S. Tanenbaum.Computer Networks. Pren-
tice Hall, Englewood Cliffs, 2003.


	Introduction
	Quality of Service Concepts
	QoS specification
	QoS provision
	QoS control
	QoS management

	System design
	Application
	Middleware
	Basic service

	QoS Components and QoS Mapping
	QoS specification
	QoS provision
	QoS Mapping
	Reservation protocol
	Admission control

	QoS control
	Traffic policing
	Scheduling discipline

	QoS management
	QoS monitoring
	QoS scaling


	Conclusions

