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Abstract: Adapting transmission parameters to the future
channel state is an appealing approach to improve efficiency
in wireless communication. Adaptation requires predicting
the channel state. Current channel-adaptive techniques as-
sume that the prediction is perfect. In this paper, we claim
that neglecting the prediction error can lead to poor perfor-
mance results, possibly even worse than without prediction at
all.
We have simulated the behaviour of adaptive modulation and
adaptive scheduling, as well as a combination of both for in-
accurate channel prediction. The results show that prediction
inaccuracy can degrade the performance of wireless commu-
nications when channel adaptive techniques are used. The
sensitivity to inaccuracy is, however, dependent on several
factors, like the adaptive technique used or the average re-
ceived signal-to-noise level at the receiver.
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1 Introduction

The widespread use of wireless communications has
increased performance and reliability requirements. As
the wireless channel is a very error-prone medium, error
mitigation and control techniques have to be used. How-
ever, the error characteristic is time-varying and a static
policy leads to low error performance or low resource
use. An appropriate solution to mitigate the effects of
time-varying errors is to adapt transmission parameters
to the channel state.

Such channel adaptive techniques (CAT) — e.g.,
adapting the used modulation or transmission power or
delaying the transmission of packets — assume that in-
formation about thefuture channel state exists and is
available. In fact, several methods exist which can pro-
vide the sender with an estimate or prediction of the
channel behaviour (namely, its attenuation) [3, 7]. How-
ever, none of these methods is perfect: the prediction
results are inaccurate and do not correspond exactly to
the future behaviour of the channel [6]. The influence of
this inaccuracy on the performance of channel adaptive
techniques evidently has a large impact on the suitability
of such techniques and should hence be carefully studied
— a study that is largely missing so far.

We developed a framework which enables this kind
of study for different channel-adaptive techniques and
combinations of them [1]. In this paper, we present the
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results obtained for adaptive modulation and adaptive
scheduling [2], as well as the combinations of adaptive
scheduling with adaptive modulation. The results show
that the impact of prediction inaccuracy has to be care-
fully taken into account when designing and using CATs.

The rest of the paper is organised as follows: Section2
describes our approach to capture prediction inaccura-
cies in a simulation framework; Section3 discusses the
channel adaptive techniques that we investigate. The re-
sults of this investigation are presented and discussed in
Section4; Section5 concludes.

2 Modelling Prediction Inaccuracy

There are a number of different approaches to pre-
dict channel behaviour [3, 7]. As all of them are fairly
complex and resource-intensive, it would be very diffi-
cult and time-consuming to actually implement, e.g., in
a simulation model, every existing solution to channel
prediction and then evaluate their effects on the channel-
adaptive techniques. In particular, simulating such a
model with actual prediction algorithms inside would
not be feasible at acceptable runtimes and at acceptable
levels of statistical confidence. Hence, we use amodel
for prediction inaccuracyinstead of the actual prediction
algorithms. This model can capture and is adapted to
the inaccuracy of a channel predictor, without depending
on the prediction algorithms themselves. This prediction
model (Section2.2) is based on an analog channel model
(Section2.1) and is used in the context of a system model
(Section2.2). The resulting simulation framework is de-
scribed in more detail in [1].
2.1 Channel Model

The channel behaviour is expressed by the attenua-
tion in dB, ak, at the discrete time instantk. We use
a Rayleigh fading channel model to generateak. The
granularity of the samples depends on the bandwidth of
the Rayleigh process and, consequently, on the speed of
the receiver (which determines the maximum Doppler
frequency).

The value of the attenuation is then used, together with
the transmitted signal power and the noise power (both
in dBm), which is assumed to be additive, white and
Gaussian (AWGN), to calculate the signal to noise ratio
(SNR) for each sample. Depending on the used modu-
lation scheme, the received signal-to-noise ratio is con-
verted to energy-per-bitEb/N ; this value is then used
to calculate the probability of a bit error, from a curve
relatingEb/N to BER for the used modulation [5].



2.2 Prediction Model
Let ak be theactualattenuation value at discrete time

instantk (as computed by the Rayleigh fading model).
To model an inaccurate predictor, we have to determine,
at a given timek0 when the prediction algorithm is en-
gaged, the predicted attenuation valuesâj at j samples
in the future fromk0 (i.e., actual valuesak are indexed
by absolute time; predicted valueŝaj are indexed by
relative time starting from the time the prediction takes
place). Theprediction erroris thenej = ak − âj where
k = k0 + j; it is illustrated in Figure1. We also assume
that the errorej has mean 0 and follows a Gaussian dis-
tribution.
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Figure 1: Predicted attenuation valuêaj and its error,
depending on horizonj.

The prediction accuracyαj ∈ (0, 1) is then defined
as the percentage of predicted values which are within
a rangeβ of the real signal value for a fixed prediction
horizonj (see Figure2). I.e., a predictor has accuracy
αj for a time horizon ofj samples ifP(|ej | < β) = αj ;
β is a pre-defined design parameter.
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Figure 2: Prediction accuracy as defined byα andβ.

2.3 System Model
The system model is shown in Figure3: We consider

two wireless terminals (sender and receiver), communi-
cating only in one direction. A sender sends packets over
an error-prone wireless channel with constant bandwidth
to a receiver. No MAC protocol is needed as there are
only two communicating WTs and only simplex com-
munication is considered.
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Figure 3:System model

The sender contains the source of packets as well

as a scheduler and a predictor module. The scheduler
performs the actual channel adaptive transmissions (de-
scribed in the next section), with the help of the pre-
dictor: the scheduler can obtain an estimated attenua-
tion value from the prediction, for any desired prediction
horizonj (in fact, for efficiency the predictor returns all
relevant sample values for a given packet time). The
simulated predictor computes these estimates by using
the “actual” attenuation values of the channel model and
adding a normally distributed prediction error to it; its
variance is determined fromα andβ (the mean is 0).

3 Channel-adaptive Techniques

Based upon the estimated channel attenuation ob-
tained from the predictor, the scheduler decides how to
adapt one or several transmission parameters. The basis
of this decision, for all adaptation techniques, is the com-
putation of the expected number of bit errors in a packet:
for a given start time and packet length, thehighest(pre-
dicted) attenuation within this packet length is used to
determine (using the transmission power) the smallest
SNR that this packet will encounter. Based on this SNR,
the bit error rate (BER) and the expected number of bit
errors is computed. A parameter combination is accept-
able (the packet is sent) if this expected number of bit
errors is smaller than 1, corresponding to a maximal
BERmax = 1/packetlength. The individual adaptation
techniques vary different parameters to ensure such an
acceptable combination.

3.1 Adaptive Schedulers

Channel-adaptive schedulers avoid sending data over
a channel in a bad condition, i. e. one which would lead
to an expected number of errors larger than 1 at the re-
ceiver; instead, they simplywait for better channel con-
ditions to attempt transmission.

Two simple channel-adaptive schedulers were used to
check the degradation suffered from inaccurate channel
prediction. The sending time of each packet is adapted to
the channel conditions according to one of two schedul-
ing policies.

The Clairvoyant scheduler requires thepredicted
channel to be free of errors for the length of the packet.
The scheduler postpones the packet until that condition
is true and then sends it. This means that the predicted
BER for the packet must be lower than or equal to the
BERmax calculated for the packet. TheClairvoyant
Drop at Deadlinescheduler works in a way similar to
the Clairvoyant one with the difference that it can post-
pone the packet only up to the deadline; if the sending
condition is not met, the packet is dropped. An example
where this scheduler would be useful is real-time traf-
fic where the transmission of a packet is useless after
some maximum delay since the packet information has
become stale anyway.

Finally, theBlind scheduler does not use the channel
state information to take decisions. A packet is sent as
soon as it arrives at the head of the queue. This algorithm
serves as a performance reference.



3.2 Adaptive Modulation
The modulation is also chosen according to the mini-

mum predicted signal value at the receiver. The highest
possible modulation is chosen that still leads to a bit error
probability lower thanBERmax. It is taken into account
at the time of the prediction that using a higher modula-
tion reduces the packet duration.
3.3 Adaptive Schedulers with Adaptive Modulation

Both adaptive schedulers are combined with adaptive
modulation. This is done by checking, for a certain pos-
sible transmission start time, whether the packet can be
sent with the highest modulation (BER for the packet is
lower thanBERmax). If not, the second highest modu-
lation will be tried for the same start time, and so on. If
a packet cannot be sent even using the lowest available
modulation at a time, then the next possible transmis-
sion start time will be tried. This process repeats itself
until a start time is found for which the send condition
BER ≤ BERmax is met.

4 Results

4.1 Parameters
A Rayleigh fading channel was generated determin-

istically using Jakes’s sum of cosines method [4] at
2.4 GHz, with a maximum Doppler speed of 6 km/h (the
coherence time is 16,88 ms). All results shown here were
obtained for an average SNR of 9 dB at the receiver. The
channel has a raw capacity of 2 Mbps when the lowest
modulation is used.

The load was CBR with 4000 bit packets. Load is var-
ied solely by varying the interval between the generation
of two packets. A MAC header of 272 bits (802.11) was
added to the packets, which is always transmitted with
the lowest possible modulation (BPSK in this case). It is
taken into account when making the prediction. A phys-
ical layer header of 192 bits (802.11b) was also used,
which is not taken into account either when making the
prediction or at the reception. It is used only to model
the overhead in transmission time.

Each simulation run was 500 s long. The modula-
tion could be chosen among BPSK, 4-PSK, 8-PSK, 16-
PSK, 32-PSK and 64-PSK. When the modulation is not
adapted, BPSK is used.
4.2 Metrics

The metric used to evaluate the performance is the
packet delivery rate, i.e., the ratio of correctly received
packets to all generated packets in 500 s. Since a MAC
and PHY overhead of 11.6% is added to every packet,
at 100% load more load is offered to the channel than it
can actually transmit when using the lowest modulation.
This implies that the maximum packet delivery rate at
100% load is 0.888 and not 1. This load level has been
chosen to highlight the benefits of adaptive modulation.
4.3 Simple Adaptive Mechanisms

Figure 4 shows the improvements in packet deliv-
ery rate achieved using channel-adaptive scheduling and
adaptive modulation or a combination of both for 100%
load. For the Clairvoyant Drop at Deadline scheduler
deadlines of 10 ms and 40 ms were used, one shorter
and one much longer than the channel’s coherence time

(16,88 ms). Since 100% load is used here, changing the
deadline for Clairvoyant Drop scheduler does not sig-
nificantly influence the packet delivery rate: for short
deadlines more packets are dropped by the scheduler be-
cause of lack of error-free transmission start time; for
long deadlines more packets are dropped in the queue
while the scheduler is busy waiting until a farther trans-
mission start time for the packet at the head of queue.

Due to the low averageSNR at the receiver, the
channel-adaptive schedulers do not deliver any packets
for high modulations (an error-free transmission start
time can never be found). Adaptive modulation alone
achieves a high performance, which confirms the ef-
ficiency of this CAT. Its combination with adaptive
scheduling further improves the performance, achieving
the highest packet delivery rate.
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Figure 4: Fraction of correctly delivered packets for
channel-adaptive schedulers with different static modu-
lations and for their combination with adaptive modula-
tion. Average noise power of 6 dB at the receiver.

Figure 5 shows the packet delivery rate for each of
the adaptive mechanisms working alone. One can see
that the adaptive mechanisms used alone are quite sta-
ble against the inaccurate prediction in the simulated
range. Only forβ = 5 dBm do the adaptive schedulers
and adaptive modulation show a small reduction in the
packet delivery rate.

We ran several simulations for different values of the
averageSNR at the receiver. It turned out that the results
depend, for the adaptive schedulers, on the difference be-
tween the average receivedSNR and theSNRmin which
corresponds to the limitBERmax for the packet. The
reason is intuitive: if the average channel attenuation is
near the threshold value to send the packet, even small
prediction errors can lead to taking the false decision
(postponing the packet although the channel is good or
sending even when the channel is bad). This necessarily
leads to a higher number of channel errors for sending
at bad times, and longer waiting times for postponing
when the channel is good; both these effects lead to a
lower fraction of correctly delivered packets. In a realis-
tic scenario, the averageSNR changes with time due to
propagation phenomena other than Rayleigh fading, like
shadowing. This means that the average receivedSNR
changes with time. The adaptive schedulers will then



perform worse at times when it is around the threshold
value. Adaptive modulation does not suffer from this ef-
fect, since the BER thresholds of a packet change due to
the change of the modulation.
4.4 Combined Adaptive Mechanisms

In Figure6, the variation in fraction of correctly re-
ceived packets is plotted for the different combinations
of CAT. In every case the amount of data which could
be correctly received decreases. This indicates that pre-
diction inaccuracy has a stronger influence on the perfor-
mance of combined adaptive techniques than it does on
each one for itself.

5 Conclusions

We tested the sensitivity of channel-adptive sched-
ulers and channel-adaptive modulation to inaccuracy in
channel prediction using a simulation framework devel-
oped for the purpose. The results show that inaccurate
prediction of channel attenuation only slightly affects
the channel-adaptive schedulers and adaptive modula-
tion. For the first mechanism, however, a stronger re-
duction in the fraction of correctly delivered data can
be seen when the averageSNR at the receiver lies close
to the thresholdBER. This effect is not seen for adap-
tive modulation. We also looked into the combination of
channel-adaptive scheduling with adaptive modulation.
The results show that the combination of the two differ-
ent CATs is more sensitive to prediction inaccuracy, and
the performance is then worse than that of the simple
scheduler for the same value of prediction inaccuracy.

These results lead, as expected, to the conclusion that,
although CAT are a good means to improve the per-
formance of wireless communication, their performance
depends on the accuracy of the prediction algorithms
used. Furthermore, combination of more than one CAT
can increase the sensitivity to inaccuracy. In particular
this last results warrants additional future work in find-
ing CAT combinations that are robust to prediction inac-
curacy.
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Figure 5: Fraction of correctly delivered packets as a
function of the prediction accuracyα for β = 1, 2, 5dB.
Average noise power of 6 dB at the receiver.



Clairvoyant with adaptive modulation

Clairvoyant Drop at Deadline with adaptive
modulation (deadline = 10 ms)
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Figure 6: Fraction of correctly delivered packets as a
function of the prediction accuracyα for β = 1, 2, 5dB.
Average noise power of 6 dB at the receiver.
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