Two Roads to Parallelism: Compilers and Libraries

Lawrence Rauchwerger
Parallel Computing

- It’s back (again) and ubiquitous
- We have the hardware (multicore … petascale)
- Parallel software + Productivity: not yet…
- And now ML needs it …

Our Road towards a productive parallel software development environment
For Existing Serial Programs

Previous Approaches
- Use Instruction Level Parallelism (ILP): HW + SW
 - compiler (automatic) BUT not scalable
- Thread (Loop) Level (Data) Parallelism: HW+SW
 - compiler (automatic) BUT insufficient coverage
 - manual annotations more scalable but labor intensive

Our Approach
- Hybrid Analysis: A seamless bridge of static and dynamic program analysis for loop level parallelization
 - USR - a powerful IR for irregular application
 - Speculation as needed for dynamic analysis
For New Programs

Previous Approaches
- Write parallel programs from scratch
- Use parallel language, library, annotations
- Hard Work!

Our Approach
- STAPL: Parallel Programming Environment
 - Library of parallel algorithms, distributed containers, patterns and run-time system
 - Used in PDT, an important app for DOE & Nuclear Engineers, influenced Intel’s TBB
 - …and perhaps similar to Tensorflow
Parallelizing Compilers

Auto-Parallelization of Sequential Programs
- Around for 30+ years: UIUC, Rice, Stanford, KAI, etc.
- Requires complex static analysis + other technology
- Not widely adopted

Our Approach
- Initially: speculative parallelization
- Better: Hybrid Analysis is best of both: static + dynamic
- Aspects of these techniques used in mainstream compilers and STM based systems.
- Excellent results – Major Effort – Don’t try at home
Static Data Dependence Analysis: An Essential Tool for Parallelization

The Question: Are there cross iteration dependences?
• Equivalent to determining if system of equations has integer solutions
• In general, undecidable – until symbols become numbers (at runtime)

Linear Reference Patterns
- Solutions restricted to linear addressing and control (mostly small kernels)
 o Geometric view: Polytope model
 • Some convex body contains no integral points
 o Existential solutions: GCD Test, Banerjee Test, etc
 • Potentially overly conservative
 o General solution: Presburger formula decidability
 • Omega Test: Precise, potentially slow

Nonlinear Reference Patterns
• Common cases: indirect access, recurrence without closed form
• Approaches: Linear Approximation, Symbolic Analysis, Interactive

DO j = 1, 10
a(j) = a(j+40)
ENDDO

1 ≤ j_w ≤ 10
1 ≤ j_r ≤ 10
j_w ≠ j_r
j_w = j_r + 40

DO j = 1, 10
IF (x(j) > 0) THEN
A(f(j)) = ...
ENDIF
ENDDO
Run-time Dependence Analysis: Speculative Parallelization

Problem:
FOR i = ...
A[W[i]] = A[R[i]] + C[i]

Main Idea:
• Speculatively execute the loop in parallel and record reference in private shadow data structures
• Afterwards, check shadow data structures for data dependences
 • if no dependences loop was parallel
 • else re-execute safely (loop not parallel)

Cost:
• Worst case: proportional to data size
Hybrid Analysis

Compile-time Analysis
- Symbolic analysis

Dynamic (run-time)
- **PROs**
 - No run-time overhead
- **CONs**
 - Conservative when
 - Input/computed values
 - Indirection, Control
 - Weak symbolic analysis
 - Complex recurrences
 - Impractical: Combinatorial explosion

Hybrid Analysis
- Symbolic analysis
- Extract conditions
- Evaluate conditions

Run-time Analysis
- Full reference-by-reference analysis

PROs
- Always finds answers
- Minimizes runtime overhead

CONs
- More Complex static analysis
- Run-time overhead
- Ignores compile-time analysis
DO j=1,N
a(j)=a(j+40)
ENDDO

Under what conditions can the loop be executed in parallel?

1. Collect and classify memory references.

2. Aggregate them symbolically

3. Formulate independence test.

4.a) If we can prove $1 \leq N \leq 40$
Declare loop parallel.

4.b) If N is unknown, Extract run-time test. $N \leq 40$
Hybrid Analysis

Run-time Phase

Execute the loop in parallel if possible.

DO j=1,N
 a(j)=a(j+40)
ENDDO

4.a) If we can prove $1 \leq N \leq 40$, Declare loop parallel.

4.b) If N is unknown, Extract run-time test.

N \leq 40

Compile Time

Run Time

Parallel Loop

DO PARALLEL j=1,N
 a(j)=a(j+40)
ENDDO

No run-time tests performed if not necessary!

Parallel Loop

IF ($N \leq 40$) THEN
 DO PARALLEL j=1,N
 a(j)=a(j+40)
 ENDDO
ELSE
 DO j=1,N
 a(j)=a(j+40)
 ENDDO
ENDIF

Sequential Loop

Run-time Test
DO j = 1, n
 A(j) = A(j+40)
 IF (x>0) THEN
 A(j) = A(j) + A(j+20)
 ENDIF
ENDDO

Hybrid Analysis: a slightly deeper dive

Program Level Representation of References (USR)

READ ⊩ WRITE = Empty?
Set expression to Logic expression

DO j = 1, n
 IF (x>0) THEN
 A(j) = A(j) + A(j+20)
 ENDIF
ENDDO

1. Distribute Intersection

2

3

4

(n ≤ 20 or x ≤ 0)
and n ≤ 40

Empty?

READ

WRITE

1:n

∅

WRITE

₁:n

41:40+n

∩

∪

∩

∩

∧

∧

∧

Empty?

Empty?

Empty?

Representation is Key!
Hybrid Analysis Strategy

Independence conditions factored into a series of sufficient conditions tested at runtime in the order of their complexity.
Parallelized 380 loops of 2100 analyzed loops: **92% seq. coverage**
Speedups: Hybrid Analysis vs. Intel ifort

- Older Benchmarks with smaller datasets on 4 cores only
- Better performance on 14/18 benchmarks on 4 cores
- Better performance on 10/11 benchmarks on 8 cores
So....

- What did we accomplish?
 - Full Parallelization of C-tran codes (28 benchmarks at >90% coverage)
 - A IR representation & a technique

- We cannot declare victory because:
 - Required Heroic Efforts
 - Commercial compilers adopt slowly
 - Compilers cannot create parallelism
 -- only programmers can!
How else?

First

- Think Parallel!

Then

- Develop parallel algorithms
- Raise the level of abstraction
- Use algorithm level (not only) abstraction

→

- Expressivity + Productivity
- Optimization can be compiler generated
STAPL: Standard Template Adaptive Parallel Library

A library of parallel components that adopts the generic programming philosophy of the C++ Standard Template Library (STL).

- **STL**
 - *Iterators* provide abstract access to data stored in *Containers*.
 - *Algorithms* are sequences of instructions that transform the data.

- **STAPL**
 - *Views* provide abstracted access to distributed data stored in *Distributed Containers*.
 - *Parallel Algorithms* specified by *Skeletons*
 - Run-time representation is Task Graph

Diagram:
- Containers → Iterators → Algorithms
- Containers → Views → Algorithms
- Task Graphs
High Level of Abstraction ~ similar to C++ STL
Task & Data parallelism: Asynchronous
• Parallelism (SPMD) implicit – Serialization explicit
• imperative + functional: Data flow+Containers

SPMD Programs defined by
• Data Dependence Patterns → Skeletons
 • Composition: parallel, serial, nested, …
• Tasks: Work function & Data
 • **Fine grain** tasks (coarsened)
 • Data in distributed containers

Execution Defined by:
Data Flow Graphs (Task Graphs)
Execution policies: scheduling, asynchrony..
Distributed Memory Model (PGAS)
The STAPL Graph Library (SGL)

• Many problems are modeled using graphs:
 – Web search, data-mining (Google, Youtube)
 – Social networks (Facebook, Google+, Twitter)
 – Geospatial graphs (Maps)
 – Scientific applications

• Many important graph algorithms:
 – Breadth-first search, single-source shortest path, strongly connected components, k-core decomposition, centralities
SGL Programming Model

User code

- Vertex Operator
- Neighbor Operator

Library code

- KLA
- Hierarchical
- Out-of-Core

Graph Runtime

STAPL Runtime System

- OpenMP
- MPI
- C++11 threads
Parallel Graph Algorithms May Use

- **Level-Synchronous Model**
 - BSP-style iterative computation
 - Global synchronization after each level, no redundant work

- **Asynchronous Model**
 - Asynchronous task execution
 - Point-to-point synchronizations, possible redundant work
k-Level Asynchronous Model

- k defines depth of superstep (KLA-SS)
- Unifies existing models
 - k=1: Level-synchronous
 - k=d: Asynchronous
k-Level Asynchronous (KLA) BFS

- Other strategies stop scaling after 32,768 cores
- KLA strategy faster, scales better
- Adaptively change asynchrony to balance global-synchronization costs and asynchronous penalty

Diameter = 3218
k = 9
KLA-SS = 358
PDT: Application Development with STAPL

- Compute flow of subatomic particles across a spatial domain
- Discretized spatial domain represented using pGraph
- Iterative algorithm (e.g., GMRES) iterates until particle flow in space, direction, and energy level stabilizes.
 - Matrix-vector multiplication is 90% of execution time and is implemented as sweep of spatial domain in all directions.
 - Each sweep is a task graph
Particle Transport in STAPL

Experiment keeps number of unknowns per processor constant.

PARAGRAPH size and communication increases with processor count.

Model assumes immediate processing of messages.
Conclusions: What did we accomplish? What did we learn?

• Auto-parallelization: Major Effort
 – 28 benchmarks parallelized with good coverage
 – Possible but very hard
 – Autopar: Extracts but does not create parallelism
 – Technology can be (re)used in other areas (TF compilation)

• STAPL for new parallel programs (e.g., TF)
 – New(ish) asynchronous algorithms (Data Flow, ..)
 – Distributed environment (containers, Data Flow Graph)
 – Adaptive environment & polymorphism

Avenues are complementary
• Legacy Code: Parallelization may be a good idea
• Always: Think Parallel & Write Clean Code

STAPL on https://gitlab.com/parasol-lab/stapl
and several National Labs repos
Why is this relevant?

- From obsolescence to point technology – just wait 10 years

- Static & Dynamic Array reference analysis – Basis for ML optimizing transformations – Tensors ~ n-dim arrays

- STAPL design facilitates: **Compose and Conquer**
 - Programs = Skeleton Composition
 - Global properties = Component Property Composition
 - Correctness, performance models, approximation, fault tolerance, energy

- Compile the composition (fuse TF components)
Questions?